⑴ 数据分析的几种经典的理论
数据分析理论导航页收录已经发布的工作生活用到的数据分析思路及理论方法。例如数据分析师基本技能、时间序列分析、分析软件功能介绍等。
1 大数据时代:数据分析能力重要性
2 大数据时代:数据分析基础
3 正态性检验方法介绍
4 数据分析技术:数据差异的显着性检验
5 数据分析方法:非正态数据转化成正态数据
6 均值差异性检验:Z检验和T检验综述
7 均值差异性检验:方差分析综述
8 数据分析方法:非参数检验
9 数据分析技术:拟合优度检验
10 数据分析技术:数据关联性分析综述
11 数据分析技术:数据的归纳分析
12 数据分析技术:问卷(考卷)的信度与效度
13 数据分析技术:相关关系分析
14 数据分析技术:数据分类很重要
15 数据分析技术:回归分析
16 数据分析技术:非参数检验
⑵ 数据名词解释
数据:对客观事物的性质、状态以及相互关系等进行记载的物理符号或是这些物理符号的组合,也包含数值数据和非数值数据。
信息:是数据经过加工处理后得到的另一种形式的数据,这种数据在某种程度上影响接收者的行为。具有客观性、主观性和有用性。
数据和信息的关系:信息是数据的含义,数据是信息的载体。
数据就是数值,也就是我们通过观察、实验或计算得出的结果。数据有很多种,最简单的就是数字。数据也可以是文字、图像、声音等。数据可以用于科学研究、设计、查证等。
信息,指音讯、消息、通讯系统传输和处理的对象,泛指人类社会传播的一切内容。人通过获得、识别自然旅粗散界和社会的不同信息来区别不同事物,得以认识和改造世界。在一切通讯和控制系统中,信息是一种普遍联系的形式。
1948年,数学家香农在题为“通讯的数学理论”的论文中指出:“信息是用来消除随机不定性的东西”。创建一切宇宙万物的最基本万能单位是信息。
数的解释 数 (数) ù 表示、划分或计算出来的量:数目。数量。数词。数论(数学的一支,主要研究正整数的 性质 以及和它有关的规律)。
数控。 几,几个:数人拆氏。数日。 技艺凳坦 ,学术:“今夫弈之为数,小数也”。 命运 ,天 据的解释 据 (据) ù 凭依、倚仗:据点。据险固守。
占有:窃据。盘据。据为己有。 可以用做证明的事物:字据。证据。单据。论据。契据。言之有据。 按照:据实。据称。依据。据事直书。 据 (据) ū 〔 拮据 〕
⑶ 大数据的含义包括什么哪几个方面
大数据是什么?在很多人的眼里大数据可能是一个很模糊的概念,但是,在日常生活中大数据有离我们很近,我们无时无刻不再享受着大数据所给我们带来的便利,个性化,人性化。全面的了解大数据我们应该从四个方面简单了解。定义,结构特点,我们身边有哪些大数据,大数据带来了什么,这四个方面了解。
那么“大数据”到底是什么呢?
在麦肯锡全球研究所给出的定义中指出:大数据即是一种规模大到在获取,存储,管理,分析方面大大超出了传统数据库软件工具能力范围的数据集合。简单而言大数据是数据多到爆表。大数据的单位一般以PB衡量。那么PB是多大呢?1GB=1024MB ,1PB=1024GB才足以称为大数据。
如图:
衡量单位一览表
其次,大数据具有什么样的特点和结构呢?
大数据从整体上看分为四个特点,第一,大量。
衡量单位PB级别,存储内容多。
第二,高速。
大数据需要在获取速度和分析速度上要及时迅速。保证在短时间内更多的人接收到信息。
第二,多样。
数据的来源是各种渠道上获取的,有文本数据,图片数据,视频数据等。因此数据是多种多样的。
第三,价值。
大数据不仅仅拥有本身的信息价值,还拥有商业价值。大数据在结构上还分为:结构化,半结构化,非结构化。结构化简单来讲是数据库,是由二维表来逻辑表达和实现的数据。非结构化即数据结构不规则或不完整,没有预定义的数据模型。由人类产生的数据大部分是非结构化数据。