‘壹’ 数据分析适合什么专业
数学
随着科技事业的发展,数学专业和其他专业的联系也越来越紧密,所以数学专业知识也得广泛的应用。
看到数据分析,就会想到和数据相关的行业就一定要用到数学,数据分析师需要有专业的数学功底和严密的逻辑思维,而严密的逻辑思维则来源于扎实的数学功底。学数学的同学更注重理论的完备性和逻辑链的完整性,即对于在分析过程中出现的任何一些命题,都要能证明它是正确的还是错误的。
统计学
统计学贯穿数据分析的全过程,没有统计学基础,很难有专业的数据分析。数据分析的各个步骤,都要用到统计学的知识。和数学相反,统计学是个被名字拖累的专业,会让人严重低估了它本身的专业性。其实统计学是很适合做数据相关工作的。
计算机相关专业
学习计算机专业同学可以从事数据研发/开发工程师,数据挖掘/机器学习工程师,对编程技术上的要求高一些。近年来企业招的数据分析师,其实大部分应该叫:数据程序员。基本上都是进公司跑数据的,不做啥“分析”,因此计算机相关专业会有优势。毕竟写代码写的多。数据仓储,算法这些就更依赖开发能力,这本来就是计算机专业的范畴。
‘贰’ 想当数据分析师要选什么专业
数据分析行业逐渐被企业和从业者青睐,很多人给小编留言,咨询从事数据分析选择什么专业更占优势?今天,我们也来聊聊。
一、数学专业
正所谓“学好数理化,走遍天下都不怕”,数据分析无外乎是从大量凌乱数据中发现隐含的规律,数学往往让人逻辑思维更严密,对数据更加敏感。
数据分析不是IT行业,无需精通过多编程语言,数据分析更注重实操和业务能力,且现今数据分析工具,如:Python、PowerBI等已比较容易入门。
从事数据分析,真正要提升的是逻辑思维能力、敏锐的洞察能力、良好的沟通表述能力……这些无需靠背景,通过努力也可拿下。
‘叁’ 数据分析师应选择什么专业
统计专业(有统计理论)、计算机专业专业(会编程序实现)。
‘肆’ 数据分析专业的就业方向有哪些
数据分析师:偏向商业化的数据分析,运营广告等活动效果分析,销售额或利润预测,用户特征描述等,需要较好的统计知识,需要懂1-2门数据分析工具如SAS、R等;
咨询顾问:面向客户,为客户提供数据抓取、数据分析、出数据报表、改进建议落实等咨询服务,需要有较好的沟通能力,需要懂1-2门数据分析工具如SAS、R等;(咨询顾问其实也分技术和非技术,技术类的主要是为客户搭建数据平台)
数据产品经理:一般是互联网公司独有,数据量大的公司会有自己的数据产品,如阿里巴巴的数据魔方等,主要是针对数据产品从产品立项、提开发需求、跟进产品开发、测试一直到产品上线等工作。(相对来说并不需要对从业者要求很高的数据分析或统计能力,属于目前市场上为数不多但高工资的职位)
‘伍’ 数据分析和数据处理是什么专业
数据分析和数据处理是属于计算机大数据专业。
‘陆’ 数据分析属于什么专业
一般从事数据分析员的人都是统计学或数学专业的人。
数据分析师职位要求 :
1、计算机、统计学、数学等相关专业本科及以上学历;
2、具有深厚的统计学、数据挖掘知识,熟悉数据仓库和数据挖掘的相关技术,能够熟练地使用SQL;
3、三年以上具有海量数据挖掘、分析相关项目实施的工作经验,参与过较完整的数据采集、整理、分析和建模工作;
4、对商业和业务逻辑敏感,熟悉传统行业数据挖掘背景、了解市场特点及用户需求,有互联网相关行业背景,有网站用户行为研究和文本挖掘经验尤佳;
5、具备良好的逻辑分析能力、组织沟通能力和团队精神;
6、富有创新精神,充满激情,乐于接受挑战。
‘柒’ 数据分析师一般是什么专业如何成为数据分析师
数据分析师一般是计算机或者数学相关专业。成为一个合格的大数据分析师应该学习和掌握以下技能:
统计分析:大数定律,抽样推测规律,秩和检验,回归分析,方差分析等;
可视化辅助工具:Excel,PPT,思维导图,Visio;
大数据处理框架:Hadoop,Kaffka,Storm,ELK,Spark;
数据库:SQLite,MySQL,MongoDB,Redis,Cassandra,HBase;
数据仓库/商业智能:SSIS数据仓库,SSAS SSRS,DW;
数据挖掘工具:Matlab,SAS,SPSS;
人工智能:机器学习相关知识;
挖掘算法:数据结构,一致性,常用算法;
编程语言:Python/R,Ruby,Java;
计算机对数据存储和保存了大量数据,包括科学家和工程师也都了丰富的研究和应用尽可能多的提取数量。然而想从大量数据中洞察出真正和有用的,更高价值的数据,都是需要人工干预的。这些人有丰富的行业经验和洞察力,而且对业务有深刻了解,并且能够使用好数据分析的工作,例如Excel,SPSS,Python/R等。这种职位一般存在于高科技公司,例如PayPal和Google,相信以后人工智能、大数据、云计算创业的很多中小型企业,对此职位的需要也会越来越多。
对以上知识进行有重点的学习,解决的方法是让各种技能达标:
初级数据分析师需要快速学习能力80分,数学知识40分,分析工具使用程度70分,编程语言30分,业务理解80分,逻辑思维80分,数据可视化能力40分,协调沟通能力80分。
高级数据分析师要达到快速学习能力80分,数学知识70分,分析工具使用程度90分,编程语言60分,业务理解90分,逻辑思维80分,数据可视化能力90分,协调沟通能力80分。
总之,成为分析师的重要点并非数学知识和编程能力,最重要提是业务理解和协调能力,所以针对不同的行业的分析师,要学习的行业知识也不尽相同,需要对症下药,实施不同学习策划和路径。
‘捌’ 想要做数据分析师应选择什么专业
数据分析行业的大火以及较高的薪酬待遇,让很多高中毕业生、在校大学生或职业遭遇瓶颈的人士开始蠢蠢欲动,想学习数据分析从而进入数据分析行列。但 有一个很困惑的问题就是:自己选择或学习的专业似乎和数据分析没什么交集,这个时候选择数据分析师这条道路会不会很艰难?担心自己的专业跟不上数据分析的学习进度,也担心自己的能力是否符合数据分析技能的要求。
其实,讲真的。虽然数据分析这个行业有着天然的专业鄙视链(文理科的逻辑思维功底、编程语言接受程度上以及数理统计基础实实在在的存在差别,这也是甲方更信赖理工科出身的重要原因,因为社科或文艺类专业,很少有学校会严格地按照数理逻辑去制定学生的课程培养计划),但是并不代表文科生没有任何机会,因为大学以前,其实我们都没正式接触过编程或统计学,大学本科更多的是提升一个人的思维、而不是过硬的专研能力。所以文科专业的朋友,兴趣和决定也是重要因素,不能单单凭借客观的专业背景就否定自己。
当然,学习数学与应用数学、统计学、计算机科学与技术等理工科专业的人确实比文科生有着客观的优势,但能力大于专业,兴趣才会决定你走得有多远。毕竟数据分析不像编程那样,需要你天天敲代码,要学习好多的编程语言,数据分析更注重的是你的实操和业务能力。如今的软件学习都是非常简单便捷的,我们真正需要提升的是自己的逻辑思维能力,以及敏锐的洞察能力,还得有良好的沟通表述能力。这些都是和自身的努力有关,而不是单纯凭借理工科背景就可以啃得下来的。相反这些能力更加倾向于文科生,毕竟好奇心、创造力也是一个人不可或缺的。
所以,大学选择什么专业,不要让数据分析这根绳子牵着你走,而是要问自己喜欢和擅长的是什么。如果你物理基础不好,硬要选择机动化专业,那四年的大学时光只会让你觉得难熬又无奈。一切从自身出发,发掘自己的优点和长处才是最重要的。