导航:首页 > 数据处理 > 哪些数据需要归一化处理

哪些数据需要归一化处理

发布时间:2023-09-22 03:55:39

❶ 数据的归一化处理

是的,把需要处理的数据经过处理后(通过某种算法)限制在你需要的一定范围内。首先归一化是为了后面数据处理的方便,其次是保证程序运行时收敛加快。

归一化的具体作用是归纳统一样本的统计分布性。归一化在0-1之间是统计的概率分布,归一化在某个区间上是统计的坐标分布。归一化有同一、统一和合一的意思。

1、(0,1)标准化:

这是最简单也是最容易想到的方法,通过遍历feature vector里的每一个数据,将Max和Min的记录下来,并通过Max-Min作为基数(即Min=0,Max=1)进行数据的归一化处理:

LaTex:{x}_{normalization}=frac{x-Min}{Max-Min}

Python实现:

❷ 数据预处理之数据归一化

数据预处理之数据归一化
一、简单缩放
分为:最大值缩放和均值缩放
在简单缩放中,我们的目的是通过对数据的每一个维度的值进行重新调节(这些维度可能是相互独立的),使得最终的数据向量落在[0,1]或[? 1,1]的区间内(根据数据情况而定)。
例子:在处理自然图像时,我们获得的像素值在[0,255]区间中,常用的处理是将这些像素值除以255,使它们缩放到[0,1]中。
二、逐样本均值消减(也称为移除直流分量)
如果你的数据是平稳的(即数据每一个维度的统计都服从相同分布),那么你可以考虑在每个样本上减去数据的统计平均值(逐样本计算)。
例子:对于图像,这种归一化可以移除图像的平均亮度值(intensity)。很多情况下我们对图像的照度并不感兴趣,而更多地关注其内容,这时对每个数据点移除像素的均值是有意义的。
注意:虽然该方法广泛地应用于图像,但在处理彩色图像时需要格外小心,具体来说,是因为不同色彩通道中的像素并不都存在平稳特性。
例如
Caffe demo 里头的 classification_demo.m脚本文件中对原始数据有这样的处理
im_data = im_data - mean_data;
三、特征标准化(使数据集中所有特征都具有零均值和单位方差)
特征标准化的具体做法是:首先计算每一个维度上数据的均值(使用全体数据计算),之后在每一个维度上都减
去该均值。下一步便是在数据的每一维度上除以该维度上数据的标准差。
简单的说就是:减去原始数据的均值再除以原始数据的标准差
例子
x= [ones(m, 1), x];
%x包括2个特征值和1个偏置项,所以矩阵x的规模是 x:[mX3]
sigma= std(x);%X的标准差;mu= mean(x);%X的均值;x(:,2)= (x(:,2) - mu(2))./ sigma(2);x(:,3)= (x(:,3) - mu(3))./ sigma(3);

阅读全文

与哪些数据需要归一化处理相关的资料

热点内容
技术类账号有哪些 浏览:111
从哪里能查出车辆冻结信息 浏览:112
c管家安装需要在什么程序上 浏览:353
苹果手机怎么设置国外代理 浏览:387
2k14如何交易科比 浏览:221
数控操机怎么在程序里找刀 浏览:577
登录时信息要多少个字 浏览:589
红色基因产品有哪些 浏览:770
小米手机信息验证码怎么全部删除 浏览:778
怎么看职业技术学院什么时候开学 浏览:584
房东代理直租什么意思 浏览:755
射频遥控数据终端是什么 浏览:400
南宁的和平批发市场有哪些 浏览:478
张家港租房信息一般哪个网站 浏览:241
红色产品手机怎么拍 浏览:627
淘宝双方达到一致交易怎么取消 浏览:105
哪里可以买到交易猫 浏览:64
独任审判需要什么程序 浏览:664
精选联盟的产品怎么在直播间卖 浏览:661
长沙南湖宠物市场是哪个街道 浏览:651