❶ 数据分析的流程是什么
1、明确分析的目的,提出问题。只有弄清楚了分析的目的是什么,才能准确定位分析因子,提出有价值的问题,提供清晰的指引方向。
2、数据采集。收集原始数据,数据来源可能是丰富多样的,一般有数据库、互联网、市场调查等。具体办法可以通过加入“埋点”代码,或者使用第三方的数据统计工具。
3、数据处理。对收集到的原始数据进行数据加工,主要包括数据清洗、数据分组、数据检索、数据抽取等处理方法。
4、数据探索。通过探索式分析检验假设值的形成方式,在数据之中发现新的特征,对整个数据集有个全面认识,以便后续选择何种分析策略。
5、分析数据。数据整理完毕,就要对数据进行综合分析和相关分析,需要对产品、业务、技术等了如指掌才行,常常用到分类、聚合等数据挖掘算法。Excel是最简单的数据分析工具,专业数据分析工具有R语言、Python等。
6、得到可视化结果。借助可视化数据,能有效直观地表述想要呈现的信息、观点和建议,比如金字塔图、矩阵图、漏斗图、帕累托图等,同时也可以使用报告等形式与他人交流。
❷ 数据分析的七个关键步骤
数据分析的七个关键步骤
独自工作,将深奥的公式应用于大量的数据搜索从而得到有用的见解。但这还仅仅是一个过程中的一个步骤。数据分析本身不是目标,目标是使业务能够做出更好的决策。数据科学家必须构建产品,让组织中的每个人更好地使用数据,,使每个部门和各级都能用数据驱动决策。
数据价值链是对自动收集产品,清洗和分析数据的捕获,通过仪表板或报告来提供信息和预测。自动化进行分析,而且数据科学家可以在改进工作与业务模型,提高预测精度。
虽然每个公司创建数据产品针对自己的需求和目标,但是总体的步骤和目标是一致的:
1.决定目标:数据价值链的第一步必须先有数据,然后业务部门已经决定数据科学团队的目标。这些目标通常需要进行大量的数据收集和分析。因为我们正在研究数据驱动决策,我们需要一个可衡量的方式知道业务正向着目标前进。关键指标或性能指标必须及早发现。
2.确定业务标杆:业务应该做出改变来改善关键指标从而达到它们的目标。如果没有什么可以改变,就不可能有进步,,论多少数据被收集和分析。确定目标、指标在项目早期为项目提供了方向,避免无意义的数据分析。例如,目标是提高客户留存率,其中一个指标可以为客户更新他们的订阅率,业务可以通过更新页面的设计,时间和内容来设置提醒邮件和做特别促销活动。
3.数据收集:撒一张数据的大网,更多数据,特别是数据从不同渠道找到更好的相关性,建立更好的模型,找到更多可行的见解。大数据经济意味着个人记录往往是无用的,在每个记录可供分析才可以提供真正的价值。公司密切检测他们的网站来跟踪用户点击和鼠标移动,通过射频识别(RFID)技术来跟踪他们行动的方式等等。
4.数据清洗:数据分析的第一步是提高数据质量。数据科学家处理正确的拼写错误,处理缺失数据和清除无意义的信息。在数据价值链中这是最关键的步骤,即使最好的数据值分析如果有垃圾数据这将会产生错误结果和误导。不止一个公司惊奇地发现,很大一部分客户住在斯克内克塔迪(美国城市),纽约,和小镇的人口不到70000人等等。然而,斯克内克塔迪邮政编码12345,所以不成比例地出现在几乎每一个客户档案数据库由于消费者往往不愿真实填入他们的在线表单。分析这些数据将导致错误的结论,除非数据分析师采取措施验证从而得到的是干净的数据。。这通常意味着自动化的过程,但这并不意味着人类无法参与其中。
5.数据建模:数据科学家构建模型,关联数据与业务成果和提出建议并确定关于业务价值的变化这是其中的第一步。这就是数据科学家成为关键业务的独特专长,通过数据,建立模型,预测业务成果。数据科学家必须有一个强大的统计和机器学习的背景来构建科学精确的模型和避免毫无意义的相关性陷阱和模型依赖于现有的数据,他们的未来预测是无用的。但统计背景是不够的,数据科学家需要更好了解业务,他们将能够识别数学模型的结果是否有意义的有价值的。
6.数据科学团队:数据科学家是出了名的难以雇用,这是一个好主意来构建一个数据科学团队通过那些有一个高级学位统计关注数据建模和预测,而团队的其他人,合格的基础设施工程师,软件开发人员和ETL 专家,建立必要的数据收集基础设施、数据管道和数据产品,使数据通过报告和仪表盘来显示结果和业务模型。这些团队通常使用大规模数据分析平台Hadoop自动化数据收集和分析和运行整个过程来作为一个产品。
7.优化和重复:数据价值链是一个可重复的过程,通过连续改进价值链的业务和数据本身。基于模型的结果,企业将通过数据科学团队测量的结果来驱动业务。在结果的基础上,企业可以决定进一步行动通过数据科学团队提高其数据收集、数据清理和数据模型。如果企业对于重复这个过程越快,就越早能走向正确的方向,从而得到数据价值。理想情况下,多次迭代后,模型将生成准确的预测,业务将达到预定义的目标,数据价值链的结果将用于监测和报告,人人都搬来解决下一个商业挑战。
以上是小编为大家分享的关于数据分析的七个关键步骤的相关内容,更多信息可以关注环球青藤分享更多干货
❸ 数据分析包含哪几个步骤,主要内容是什么
【导读】随着大数据,人工智能化的普及,a帮助我们解决了很多问题,其主要表现在大数据分析上,那么数据分析包含哪几个步骤,主要内容是什么呢?为了帮助大家更好的了解数据分析过程,下面是小编整理的数据分析过程主要有下面6个步骤,一起来看看吧!
以上就是小编为大家整理发布的关于“数据分析包含哪几个步骤,主要内容是什么?”,希望对大家有所帮助。更多相关内容,关注小编,持续更新。
❹ 什么是调查数据整理的第一步
1、选择调研课题。 选题,即选择调查、分析的内容、对象和角度。选题是调查分析的第一个环节,也是非常重要的环节。选题如同生产者确定产品计划,如果不确定品种、性能、规格、型号,就不清楚原材料、工艺、技术、设备、投资方向等生产要素。同理,不确定选题,就不能确定需要哪些资料,用什么方法整理、加工这些资料,分析方向和角度是什么。
2、收集调查资料。选题确定之后,就要根据研究对象和分析内容来收集相关资料了。资料主要来自工作岗位的原始数据记录,除了这部分资料外,还可以通过本单位资料室、上级主管部门、行业协会、媒体或其他渠道,收集与调查分析主题相关的数据资料。
3、加工、整理数据。加工、整理调查资料,特别是数据资料,是调查分析产品从原材料到半成品的关键步骤,也是从半成品到成品的关键铺垫。第一步:数据分组整理,“单元”归纳描述。即根据数据素材的构成情况、分析视角(选题)及信息需求对资料进行分组整理; 第二步:选择分析方法,具体加工计算。在完成了数据分组整理,“单元”归纳描述之后,按照分析研究角度,选择专业的分析方法,对分析指标进行加工、计算。
4、补充相关素材。 通过对数据的整理、加工、会得到初步的研究印象和结论,为了支撑、印证这些印象和初步观点,还要搜集一些必要的补充素材:企业生产经营的相关数据或信息,如市场占有率、订单、决策记录(会议、总结、简报、销售方案、管理制度等);宏观经济形势信息;行业情况信息;相关层面的群体反映等。
5、梳理报告思路。根据对数据及其他资料的加工、整理情况,和相关补充素材所反馈的各种信息,围绕研究主题,对报告思路进行梳理,对研究观点和结论进行归纳。如:分析对象运行的趋势、特点是什么?需要从几个方面来描述“情况”?现象背后的原因是什么?经验、启示、教训是什么?对策和建议是什么等等。
6、筹划文章结构。文章的结构,就是调查报告的布局和组合。其要素是:层次、段落、过渡、照应、开头、结尾。当您把报告思路梳理清楚之后(有时在梳理过程中),就要筹划文章结构了。其筹划原则应该是:主题突出、层次清晰、条贯有序、布局得体。
❺ 数据分析的步骤是什么
1.问题定义
比较典型的场景是我们需要针对企业的数据进行分析,比如公司通常会有销售数据、用户数据、运营数据、产品生产数据……你需要从这些数据里获得哪些有用的信息,对策略的制定进行指导呢?又比如你需要做的是一份市场调研或者行业分析,那么你需要知道你需要获得关于这个行业的哪些信息。
首先你需要确定去分析的问题是什么?你想得出哪些结论?
比如某地区空气质量变化的趋势是什么?
王者荣耀玩家的用户画像是什么样的?经常消费的是那类人?
影响公司销售额增长的关键因素是什么?
生产环节中影响产能和质量的核心指标是什么?
如何对分析用户画像并进行精准营销?
如何基于历史数据预测未来某个阶段用户行为?
这些问题可能来源于你已有的经验和知识。比如你已经知道每周的不同时间用户购买量不一样,那么你可以通过分析得出销量和时间的精确关系,从而精准备货。又比如你知道北京最近几年的空气质量是在变坏的,可能的因素是工厂排放、沙尘暴、居民排放、天气因素等,那么在定义问题的时候你就需要想清楚,需要针对哪些因素进行重点分析。
有些问题则并不清晰,比如在生产环节中,影响质量的核心指标是什么,是原材料?设备水平?工人水平?天气情况?某个环节工艺的复杂度?某项操作的重复次数?……这些可能并不明显,或者你是涉足新的领域,并没有非常专业的知识,那么你可能需要定义的问题就需要更加宽泛,涵盖更多的可能性。
问题的定义可能需要你去了解业务的核心知识,并从中获得一些可以帮助你进行分析的经验。从某种程度上说,这也是我们经常提到的数据思维。数据分析很多时候可以帮助你发现我们不容易发现的相关性,但对问题的精确定义,可以从很大程度上提升数据分析的效率。
如何更好地定义问题?
这就需要你在长期的训练中找到对数据的感觉,开始的时候你拿到特别大的数据,有非常多的字段,可能会很懵逼,到底应该从什么地方下手呢?
但如果有一些经验就会好很多。比如,你要研究影响跑步运动员速度的身体因素,那么我们可能会去研究运动员的身高、腿长、体重、甚至心率、血压、臂长,而不太会去研究运动员的腋毛长度,这是基于我们已有的知识。又比如我们要分析影响一个地方房价的因素,那么我们可能会有一些通用的常识,比如城市人口、地理位置、GDP、地价、物价水平,更深入的可能会有产业格局、文化状态、气候情况等等,但一般我们不会去研究城市的女孩长相,美女占比。
所以当你分析的问题多了之后,你就会有一些自己对数据的敏感度,从而养成用数据分析、用数据说话的习惯。这个时候你甚至可以基于一些数据,根据自己的经验做出初步的判断和预测(当然是不能取代完整样本的精准预测),这个时候,你就基本拥有数据思维了。
2.数据获取
有了具体的问题,你就需要获取相关的数据了。比如你要探究北京空气质量变化的趋势,你可能就需要收集北京最近几年的空气质量数据、天气数据,甚至工厂数据、气体排放数据、重要日程数据等等。如果你要分析影响公司销售的关键因素,你就需要调用公司的历史销售数据、用户画像数据、广告投放数据等。
数据的获取方式有多种。
一是公司的销售、用户数据,可以直接从企业数据库调取,所以你需要SQL技能去完成数据提取等的数据库管理工作。比如你可以根据你的需要提取2017年所有的销售数据、提取今年销量最大的50件商品的数据、提取上海、广东地区用户的消费数据……,SQL可以通过简单的命令帮你完成这些工作。
第二种是获取外部的公开数据集,一些科研机构、企业、政府会开放一些数据,你需要到特定的网站去下载这些数据。这些数据集通常比较完善、质量相对较高。当然这种方式也有一些缺陷,通常数据会发布的比较滞后,但通常因为客观性、权威性,仍然具有很大的价值。
第三种是编写网页爬虫,去收集互联网上的数据。比如你可以通过爬虫获取招聘网站某一职位的招聘信息,爬取租房网站上某城市的租房信息,爬取豆瓣评分评分最高的电影列表,获取知乎点赞排行、网易云音乐评论排行列表。基于互联网爬取的数据,你可以对某个行业、某种人群进行分析,这算是非常靠谱的市场调研、竞品分析的方式了。
当然,比较BUG的一点是,你通常并不能够获得所有你需要的数据,这对你的分析结果是有一定影响的,但不不影响的是,你通过有限的可获取的数据,提取更多有用的信息。
3.数据预处理
现实世界中数据大体上都是不完整,不一致的脏数据,无法直接进行数据分析,或分析结果差强人意。数据预处理有多种方法:数据清理,数据集成,数据变换,数据归约等。把这些影响分析的数据处理好,才能获得更加精确地分析结果。
比如空气质量的数据,其中有很多天的数据由于设备的原因是没有监测到的,有一些数据是记录重复的,还有一些数据是设备故障时监测无效的。
那么我们需要用相应的方法去处理,比如残缺数据,我们是直接去掉这条数据,还是用临近的值去补全,这些都是需要考虑的问题。
当然在这里我们还可能会有数据的分组、基本描述统计量的计算、基本统计图形的绘制、数据取值的转换、数据的正态化处理等,能够帮助我们掌握数据的分布特征,是进一步深入分析和建模的基础。
4.数据分析与建模
在这个部分需要了解基本的数据分析方法、数据挖掘算法,了解不同方法适用的场景和适合的问题。分析时应切忌滥用和误用统计分析方法。滥用和误用统计分析方法主要是由于对方法能解决哪类问题、方法适用的前提、方法对数据的要求不清等原因造成的。
另外,选择几种统计分析方法对数据进行探索性的反复分析也是极为重要的。每一种统计分析方法都有自己的特点和局限,因此,一般需要选择几种方法反复印证分析,仅依据一种分析方法的结果就断然下结论是不科学的。
比如你发现在一定条件下,销量和价格是正比关系,那么你可以据此建立一个线性回归模型,你发现价格和广告是非线性关系,你可以先建立一个逻辑回归模型来进行分析。
一般情况下,回归分析的方法可以满足很大一部分的分析需求,当然你也可以了解一些数据挖掘的算法、特征提取的方法来优化自己的模型,获得更好地结果。
5.数据可视化及数据报告的撰写
分析结果最直接的结果是统计量的描述和统计量的展示。
比如我们通过数据的分布发现数据分析工资最高的5个城市,目前各种语言的流行度排行榜,近几年北京空气质量的变化趋势,避孕套消费的地区分布……这些都是我们通过简单数据分析与可视化就可以展现出的结果。
另外一些则需要深入探究内部的关系,比如影响产品质量最关键的几个指标,你需要对不同指标与产品质量进行相关性分析之后才能得出正确结论。又比如你需要预测未来某个时间段的产品销量,则需要你对历史数据进行建模和分析,才能对未来的情况有更精准的预测。
数据分析报告不仅是分析结果的直接呈现,还是对相关情况的一个全面的认识。我们经常看到一些行业分析报告从不同角度、深入浅析地剖析各种关系。所以你需要一个讲故事的逻辑,如何从一个宏观的问题,深入、细化到问题内部的方方面面,得出令人信服的结果,这需要从实践中不断训练。
数据分析的一般流程总的来说就是这几个步骤:问题定义、数据获取、数据预处理、数据分析与建模、数据可视化与数据报告的撰写。