导航:首页 > 数据处理 > 数据分析要会什么

数据分析要会什么

发布时间:2023-09-16 00:07:31

1. 数据分析师需要学什么

一、统计学:我看一些人推荐了不少统计学的专业书籍,直接把人吓跑了。

我自己就大学时候学过《概率论与数理统计》,其他统计相关的内容也没怎么看过。

对于互联网的数据分析来说,并不需要掌握太复杂的统计理论。

所以只要按照本科教材,学一下统计学就够了。

二、编程能力:学会一门编程语言,会让你处理数据的效率大大提升。

如果你只会在 Excel 上复制粘贴,动手能力是不可能快的。

我比较推荐 Python,上手比较快,写起来比较优雅。

三、数据库:数据分析师经常和数据库打交销唤道,不掌握数据库的使用可不行。

学会如何建表和使用 SQL 语言进行数据处理,可以说是必不可少的技能。

四、数据仓库:许多人分不清楚数据库和数据仓库的差异,简链吵单来说,数据仓库记录了所有历史数据,专门设计为方便数据分析人员高效使用的。

五、数据分析方法:对于互联网数据分析人员来说,可以看一下《精益创业》和《精益数据分析》,掌握常用的数据分析方法,然后再根据自己公司的产品调整,灵活组合。

六、数据分析工具:SAS、Matlab、SPSS 这些工具经常有人推荐,我要说的是在互联亏唤凯网公司一般都用不上。

做可视化的 Tableau,统计分析的友盟、网络统计,还有像我们神策分析等。

2. 数据分析师要学会什么技能

要熟练使用 Excel、至少熟悉并精通一种数据挖掘工具和语言、撰写报告的能力、要打好扎实的 SQL 基础。

1、要熟练使用 Excel

Excel 可以进行各种数据的处理、统计分析和辅助决策操作,作为常用的数据处理和展现工具,数据分析师除了要熟练将数据用 Excel 中的图表展现出来,还需要掌握为生成的图表做一系 列的格式设置的方法。

注意:

1、与传统的数据分析师相比,互联网时代的数据分析师面临的不是数据匮乏,而是数据过剩。因此,互联网时代的数据分析师必须学会借助技术手段进行高效的数据处理。更为重要的是,互联网时代的数据分析师要不断在数据研究的方法论方面进行创新和突破。

2、就行业而言,数据分析师的价值与此类似。就新闻出版行业而言,无论在任何时代,媒体运营者能否准确、详细和及时地了解受众状况和变化趋势,都是媒体成败的关键。

3. 数据分析需要掌握些什么知识

1、数学知识:数学是每一位数据分析师必学的基础知识,对于初级数据分析师来讲,必须要具备一定的公式计算能力,并且要了解常用的模型算法。

2、分析工具:对于初级分析师来看,必须要学会玩转excel,并且要将透视表和公式使用的比较熟练。除此之外,还要学会VBA基本必备,SPSS/SAS/R等分析工具的使用。

3、编程语言:初级的数据分析师,是必须要会写SQL查询,有需要的可以写一下Hadoop和Hive查询。另外,还要学习好Python,这都是具备的基础语言。

4、业务理解:业务理解对于每一位数据分析来说也是基础的知识,主要包括获取方案以及指标的选取还有最终结论洞察等各个方面的内容。

4. 数据分析需要学习哪些

1、数学知识



数学知识是数据分析师的基础知识。对于初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力即可,了解常用统计模型算法则是加分。



对于高级数据分析师,统计模型相关知识是必备能力,线性代数(主要是矩阵计算相关知识)最好也有一定的了解。



而对于数据挖掘工程师,除了统计学以外,各类算法也需要熟练使用,对数学的要求是最高的。



所以数据分析并非一定要数学能力非常好才能学习,只要看你想往哪个方向发展,数据分析也有偏“文”的一面,特别是女孩子,可以往文档写作这一方向发展。



2、分析工具



对于初级数据分析师,玩转Excel是必须的,数据透视表和公式使用必须熟练,VBA是加分。另外,还要学会一个统计分析工具,SPSS作为入门是比较好的。



对于高级数据分析师,使用分析工具是核心能力,VBA基本必备,SPSS/SAS/R至少要熟练使用其中之一,其他分析工具(如Matlab)视情况而定。



对于数据挖掘工程师……嗯,会用用Excel就行了,主要工作要靠写代码来解决呢。



3、编程语言



对于初级数据分析师,会写SQL查询,有需要的话写写Hadoop和Hive查询,基本就OK了。



对于高级数据分析师,除了SQL以外,学习Python是很有必要的,用来获取和处理数据都是事半功倍。当然其他编程语言也是可以的。



对于数据挖掘工程师,Hadoop得熟悉,Python/Java/C++至少得熟悉一门,Shell得会用……总之编程语言绝对是数据挖掘工程师的最核心能力了。



4、业务理解



业务理解说是数据分析师所有工作的基础也不为过,数据的获取方案、指标的选取、乃至最终结论的洞察,都依赖于数据分析师对业务本身的理解。



对于初级数据分析师,主要工作是提取数据和做一些简单图表,以及少量的洞察结论,拥有对业务的基本了解就可以。



对于高级数据分析师,需要对业务有较为深入的了解,能够基于数据,提炼出有效观点,对实际业务能有所帮助。



对于数据挖掘工程师,对业务有基本了解就可以,重点还是需要放在发挥自己的技术能力上。



业务能力是优秀数据分析师必备的,如果你之前对某一行业已经非常熟悉,再学习数据分析,是非常正确的做法。刚毕业没有行业经验也可以慢慢培养,无需担心。



5、逻辑思维



这项能力在我之前的文章中提的比较少,这次单独拿出来说一下。



对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。



对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。



对于数据挖掘工程师,逻辑思维除了体现在和业务相关的分析工作上,还包括算法逻辑,程序逻辑等,所以对逻辑思维的要求也是最高的。



6、数据可视化



数据可视化说起来很高大上,其实包括的范围很广,做个PPT里边放上数据图表也可以算是数据可视化,所以我认为这是一项普遍需要的能力。



对于初级数据分析师,能用Excel和PPT做出基本的图表和报告,能清楚的展示数据,就达到目标了。



对于高级数据分析师,需要探寻更好的数据可视化方法,使用更有效的数据可视化工具,根据实际需求做出或简单或复杂,但适合受众观看的数据可视化内容。



对于数据挖掘工程师,了解一些数据可视化工具是有必要的,也要根据需求做一些复杂的可视化图表,但通常不需要考虑太多美化的问题。



7、协调沟通



对于初级数据分析师,了解业务、寻找数据、讲解报告,都需要和不同部门的人打交道,因此沟通能力很重要。



对于高级数据分析师,需要开始独立带项目,或者和产品做一些合作,因此除了沟通能力以外,还需要一些项目协调能力。



对于数据挖掘工程师,和人沟通技术方面内容偏多,业务方面相对少一些,对沟通协调的要求也相对低一些。

5. 数据分析需要掌握哪些知识

数学知识
对于初级数据分析师来说,则需要了解统计相关的基础性内容,公式计算,统计模型等。当你获得一份数据集时,需要先进行了解数据集的质量,进行描述统计。

而对于高级数据分析师,必须具备统计模型的能力,线性代数也要有一定的了解。分析工具
对于分析工具,SQL 是必须会的,还有要熟悉Excel数据透视表和公式的使用,另外,还要学会一个统计分析工具,SAS作为入门是比较好的,VBA 基本必备,SPSS/SAS/R 至少要熟练使用其中之一,其他分析工具(如 Matlab)可以视情况而定。编程语言
数据分析领域最热门的两大语言是 R 和 Python。涉及各类统计函数和工具的调用,R无疑有优势。但是大数据量的处理力不足,学习曲线比较陡峭。Python 适用性强,可以将分析的过程脚本化。所以,如果你想在这一领域有所发展,学习 Python 也是相当有必要的。

当然其他编程语言也是需要掌握的。要有独立把数据化为己用的能力, 这其中SQL 是最基本的,你必须会用 SQL 查询数据、会快速写程序分析数据。当然,编程技术不需要达到软件工程师的水平。要想更深入的分析问题你可能还会用到:Exploratory analysis skills、Optimization、Simulation、Machine Learning、Data Mining、Modeling 等。业务理解
对业务的理解是数据分析师工作的基础,数据的获取方案、指标的选取、还有最终结论的洞察,都依赖于数据分析师对业务本身的理解。

对于初级数据分析师,主要工作是提取数据和做一些简单图表,以及少量的洞察结论,拥有对业务的基本了解就可以。对于高级数据分析师,需要对业务有较为深入的了解,能够基于数据,提炼出有效观点,对实际业务能有所帮助。对于数据挖掘工程师,对业务有基本了解就可以,重点还是需要放在发挥自己的技术能力上。逻辑思维
对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。对于数据挖掘工程师,罗辑思维除了体现在和业务相关的分析工作上,还包括算法逻辑,程序逻辑等,所以对逻辑思维的要求也是最高的。数据可视化数据可视化主要借助于图形化手段,清晰有效地传达与沟通信息。听起来很高大上,其实包括的范围很广,做个 PPT 里边放上数据图表也可以算是数据可视化。

对于初级数据分析师,能用 Excel 和 PPT 做出基本的图表和报告,能清楚地展示数据,就达到目标了。对于稍高级的数据分析师,需要使用更有效的数据分析工具,根据实际需求做出或简单或复杂,但适合受众观看的数据可视化内容。协调沟通
数据分析师不仅需要具备破译数据的能力,也经常被要求向项目经理和部门主管提供有关某些数据点的建议,所以,你需要有较强的交流能力。

6. 数据分析需要掌握哪些知识

数据分析主要需要学习:认识数据、数据基础运算:科学计算模块Numpy—基础操作、数据统计分析:科学计算模块Numpy进阶—统计分析、数据可视化基础:贺轮matplotlib基础绘图模块、数据可视化高阶:pyecharts三方库html动图绘制、表格数据操作:pandas操作表格数据、pandas进阶—数据清洗 、数据集成、数据规约等内容。
认识数据:数据的定义、数据的类型、数据的度量方式、数据来源、脏数据来源、为什么做数据处理、数据处理有哪些维度。
数据基础运算:科学计算模块Numpy—基础操作:简介、矩阵的创建、矩阵的运算、矩阵的属性、自定义数组的创建、数组的属性、特定形式数组的创建、随机数组的创建、数组的索引、数组的形状变换、数组的拆分和合并、数组运算
数据统计分析:科学计算模块Numpy进阶—统计分析:numpy文件读写、数组去重和重复、数组排序、常用统计分析函数
数据可视化基础:matplotlib基础绘图模:块折线图绘制、散点图绘制、柱状图绘制、子图绘制、直方图绘制、饼图绘制、箱线图绘制、雷达图肢烂绘制、三维图绘图、动图的绘制
数据可视化高阶:pyecharts三方库html动图绘制:yecharts简介、柱状图绘制、饼图绘制、折线图绘制、组合图绘制、流向地图绘制、中国地图绘制、世界地图绘制
表格数据操作:pandas操作表格数据:Pandas简介、DataFrame与Series的创建、DataFrame与Series属性、DataFrame索引修改、Pandas文件读写、DataFrame查询操作、DataFrame增删改操作、Pandas统计分析、Pandas时间数据、Pandas分组聚合、Pandas透视表及交叉表
pandas进阶—数据清洗 、数据集成、数据规约:认识数据处理、数据集成历拍漏、数据集成-堆叠合并、数据集成-主键合并、数据集成-重叠合并、数据清洗--重复值处理、数据清洗--缺失值处理

7. 数据分析需要掌握哪些知识呢

数据分析所需要掌握的知识:

阅读全文

与数据分析要会什么相关的资料

热点内容
如何制造情怀产品 浏览:904
委托加盟代理怎么做 浏览:342
智慧消防合作代理怎么办 浏览:615
余额宝为什么没有类似产品储存 浏览:449
什么是月份信息 浏览:919
技术保障是如何保障生产的 浏览:722
制作直方图数据要多少 浏览:678
大数据需要什么学科 浏览:442
怎么查货代是一级代理吗 浏览:319
又木黑糖姜茶怎么代理 浏览:574
文科和技术工哪个好 浏览:164
牛市怎么交易最好 浏览:444
关于交通安全的信息有哪些 浏览:279
代理微商怎么办理 浏览:239
财务代理行业如何报税 浏览:48
阅读课外书的时候需要哪些信息呢 浏览:97
商品房契税交多久才能交易 浏览:148
交易猫如何将钱提出来 浏览:910
只买涨跌的是什么交易 浏览:794
羊用什么产品 浏览:905