❶ java 大数据怎么做
Java是编程语言;
大数据是一个概念,包含的技术较多,比如Hadoop、Spark、Storm等;
学习大数据先要学习Java,Java是基础,而大数据比较核心的两个课程是HADOOP、SPARK。
❷ 大数据的基础语言除了Java还包括哪些呢
大数据基础语言大概有十种。一下有五种较为广泛的。
1.R语言
R语言的使用人数多。R 的好处在于它简单易上手,透过 R,你可以从复杂的数据集中筛选你要的数据,从复杂的模型函数中操作数据,建立井然有序的图表来呈现数字,这些都只需要几行程序代码就可以了,
2.python
Python 结合了 R 的快速、处理复杂数据采矿的能力以及更务实的语言等各个特质,迅速地成为主流,Python 比起 R,学起来更加简单也更直观,而且它的生态系统近几年来不可思议地快速成长,在统计分析上比起 R 功能更强。
3.JAVA
Java 没有和 R 和 Python 一样好的可视化功能,它也不是统计建模的最佳工具,但是如果你需要建立一个庞大的系统、使用过去的原型,那 Java 通常会是你最基的选择。
4.julia
Julia 是个高阶、不可思议的快速和善于表达的语言,比起 R 要快的许多,比起 Python 又有潜力处理更具规模的数据,也很容易上手。
5.Hadoop and Hive
Hadoop 为处理一批批数据处理,发展以 Java 为基础的架构关键;相较于其他处理工具,Hadoop 慢许多,但是无比的准确和可被后端数据库分析广泛使用。和 Hive 搭配的很好,Hive 是基于查询的架构下,运作得相当好。
❸ 大数据用什么语言开发
目前全世界的开发人员,编码人员和软件工程师都使用许多编程语言。根据一项调查,计算机语言的总数总计达9000种。但是,如今,其中只有50种编程语言是首选。
编程语言会根据大数据和AI等行业而有所不同。科技市场由大数据主导,因此,如果作为大数据专业人士,必须学习最重要的编程语言。
大数据中最喜欢的编程语言:
Python
Python在全球拥有500万用户,目前被其视为开发人员最常用的编程语言之一。让我们感受到Python是未来流行编程的是,世界上一些成功的公司选择Python编程语言进行产品开发,比如:NASA,Google,Instagram,Spotify,Uber,Netflix,Dropbox,Reddit和Pinterest,而且初学者和专业人员都认为Python是一种功能强大的语言。
Python由Guido van Rossum于1991年开发,Python成为程序员第一个学习入门级编程语言。
Python最适合针对大数据职业的技术专业人员,将在数据分析,Web应用程序或统计代码与生产数据库集成一起时,Python成为了最佳选择。此外,它还具有强大的库软件包作为后盾,可帮助满足大数据和分析需求,使其成为大数据爱好者的首选。Pandas,NumPy,SciPy,Matplotlib,Theano,SymPy,Scikit学习是大数据中最常用的一些库。
R
R编程语言为数据表示提供了多种图形功能,例如条形图,饼图,时间序列,点图,3D表面,图像图,地图,散点图等。借助R语言,可以轻松地自定义图形并开发新鲜个性的图形。
R语言由Ross Ihaka和Robert Gentleman编写;但是,它现在是由R开发核心团队开发的。它是一种可编程语言,有助于有效地存储和处理数据。R不是数据库,而是一种可以轻松连接到数据库管理系统(DBMS)的语言。R可以轻松连接到excel和MS Office,但它本身不提供任何电子表格数据视图。编程语言是数据分析的理想选择,它有助于访问分析结果的所有领域,并与分析方法结合使用,从而得出对公司重要的肯定结论。
Scala
Scala是金融行业主要使用的一种开源高级编程语言。Scala特点是可确保其在大数据可用性方面的重要性。
Apache Spark是用于大数据应用程序的集群计算框架,是用Scala编写的。大数据专业人员需要在Scala中具有深入的知识和动手经验。
Java
Java进入技术行业已有一段时间了,自Java诞生以来,它就以其在数据科学技术中的多功能性而闻名。值得注意的是,用于处理和存储大数据应用程序的开源框架Hadoop HDFS已完全用Java编写。Java被广泛用于构建各种ETL应用程序,例如Apache,Apache Kafka和Apache Camel等,这些应用程序用于运行数据提取,数据转换以及在大数据环境中的加载。
收入最高的编程语言
根据Stack Overflow的调查,Scala,Go和Objective-C是目前丰厚报酬的编程语言。
Scala– 150,000美元
java– 120,000美元
Python– 120,000
R – 109,000美元
Twitter,Airbnb,Verizon和Apple等公司都使用Scala。因此,使其成为收入最高的编程语言是完全有符合现实的。
今天有超过250种编程语言,尽管有多种语言可供选择,但多数开发者认为Python仍然是赢家,拥有70,000多个库和820万用户。除了Python,你还需要不断提高自己的技能并学习新的编程语言,以保持与行业的联系。
❹ 大数据处理需要用到的九种编程语言
大数据处理需要用到的九种编程语言
随着大数据的热潮不断升温,几乎各个领域都有洪水倾泻般的信息涌来,面对用户成千上万的浏览记录、记录行为数据,如果就单纯的Excel来进行数据处理是远远不能满足的。但如果只用一些操作软件来分析,而不怎么如何用逻辑数据来分析的话,那也只是简单的数据处理。
替代性很高的工作,而无法深入规划策略的核心。
当然,基本功是最不可忽略的环节,想要成为数据科学家,对于这几个程序你应该要有一定的认识:
R若要列出所有程序语言,你能忘记其他的没关系,但最不能忘的就是R。从1997年悄悄地出现,最大的优势就是它免费,为昂贵的统计软件像是Matlab或SAS的另一种选择。
但是在过去几年来,它的身价大翻转,变成了资料科学界眼中的宝。不只是木讷的统计学家熟知它,包括WallStreet交易员、生物学家,以及硅谷开发者,他们都相当熟悉R。多元化的公司像是Google、Facebook、美国银行以及NewYorkTimes通通都使用R,它的商业效用持续提高。
R的好处在于它简单易上手,透过R,你可以从复杂的数据集中筛选你要的数据,从复杂的模型函数中操作数据,建立井然有序的图表来呈现数字,这些都只需要几行程序代码就可以了,打个比方,它就像是好动版本的Excel。
R最棒的资产就是活跃的动态系统,R社群持续地增加新的软件包,还有以内建丰富的功能集为特点。目前估计已有超过200万人使用R,最近的调查显示,R在数据科学界里,到目前为止最受欢迎的语言,占了回复者的61%(紧追在后的是39%的Python)。
它也吸引了WallStreet的注目。传统而言,证券分析师在Excel档从白天看到晚上,但现在R在财务建模的使用率逐渐增加,特别是可视化工具,美国银行的副总裁NiallO’Conno说,“R让我们俗气的表格变得突出”。
在数据建模上,它正在往逐渐成熟的专业语言迈进,虽然R仍受限于当公司需要制造大规模的产品时,而有的人说他被其他语言篡夺地位了。
“R更有用的是在画图,而不是建模。”顶尖数据分析公司Metamarkets的CEO,MichaelDriscoll表示,
“你不会在Google的网页排名核心或是Facebook的朋友们推荐算法时看到R的踪影,工程师会在R里建立一个原型,然后再到Java或Python里写模型语法”。
举一个使用R很有名的例子,在2010年时,PaulButler用R来建立Facebook的世界地图,证明了这个语言有多丰富多强大的可视化数据能力,虽然他现在比以前更少使用R了。
“R已经逐渐过时了,在庞大的数据集底下它跑的慢又笨重”Butler说。
所以接下来他用什么呢?
Python如果说R是神经质又令人喜爱的Geek,那Python就是随和又好相处的女生。
Python结合了R的快速、处理复杂数据采矿的能力以及更务实的语言等各个特质,迅速地成为主流,Python比起R,学起来更加简单也更直观,而且它的生态系统近几年来不可思议地快速成长,在统计分析上比起R功能更强。
Butler说,“过去两年间,从R到Python地显着改变,就像是一个巨人不断地推动向前进”。
在数据处理范畴内,通常在规模与复杂之间要有个取舍,而Python以折衷的姿态出现。IPythonNotebook(记事本软件)和NumPy被用来暂时存取较低负担的工作量,然而Python对于中等规模的数据处理是相当好的工具;Python拥有丰富的资料族,提供大量的工具包和统计特征。
美国银行用Python来建立新产品和在银行的基础建设接口,同时也处理财务数据,“Python是更广泛又相当有弹性,所以大家会对它趋之若鹜。”O’Donnell如是说。
然而,虽然它的优点能够弥补R的缺点,它仍然不是最高效能的语言,偶尔才能处理庞大规模、核心的基础建设。Driscoll是这么认为的。
Julia今日大多数的数据科学都是透过R、Python、Java、Matlab及SAS为主,但仍然存在着鸿沟要去弥补,而这个时候,新进者Julia看到了这个痛点。
Julia仍太过于神秘而尚未被业界广泛的采用,但是当谈到它的潜力足以抢夺R和Python的宝座时,数据黑客也难以解释。原因在于Julia是个高阶、不可思议的快速和善于表达的语言,比起R要快的许多,比起Python又有潜力处理更具规模的数据,也很容易上手。
“Julia会变的日渐重要,最终,在R和Python可以做的事情在Julia也可以”。Butler是这么认为的。
就现在而言,若要说Julia发展会倒退的原因,大概就是它太年轻了。Julia的数据小区还在初始阶段,在它要能够和R或Python竞争前,它还需要更多的工具包和软件包。
Driscoll说,它就是因为它年轻,才会有可能变成主流又有前景。
JavaDriscoll说,Java和以Java为基础的架构,是由硅谷里最大的几家科技公司的核心所建立的,如果你从Twitter、Linkedin或是Facebook里观察,你会发现Java对于所有数据工程基础架构而言,是非常基础的语言。
Java没有和R和Python一样好的可视化功能,它也不是统计建模的最佳工具,但是如果你需要建立一个庞大的系统、使用过去的原型,那Java通常会是你最基的选择。
Hadoop and Hive
为了迎合大量数据处理的需求,以Java为基础的工具群兴起。Hadoop为处理一批批数据处理,发展以Java为基础的架构关键;相较于其他处理工具,Hadoop慢许多,但是无比的准确和可被后端数据库分析广泛使用。和Hive搭配的很好,Hive是基于查询的架构下,运作的相当好。
Scala又是另一个以Java为基础的语言,和Java很像,对任何想要进行大规模的机械学习或是建立高阶的算法,Scala会是逐渐兴起的工具。它是善于呈现且拥有建立可靠系统的能力。
“Java像是用钢铁建造的;Scala则是让你能够把它拿进窑烤然后变成钢的黏土”Driscoll说。
Kafka andStorm说到当你需要快速的、实时的分析时,你会想到什么?Kafka将会是你的最佳伙伴。其实它已经出现五年有了,只是因为最近串流处理兴起才变的越来越流行。
Kafka是从Linkedin内诞生的,是一个特别快速的查询讯息系统。Kafka的缺点呢?就是它太快了,因此在实时操作时它会犯错,有时候会漏掉东西。
鱼与熊掌不可兼得,“必须要在准确度跟速度之间做一个选择”,Driscoll说。所以全部在硅谷的科技大公司都利用两个管道:用Kafka或Storm处理实时数据,接下来打开Hadoop处理一批批处理数据系统,这样听起来有点麻烦又会有些慢,但好处是,它非常非常精准。
Storm是另一个从Scala写出来的架构,在硅谷逐渐大幅增加它在串流处理的受欢迎程度,被Twitter并购,这并不意外,因为Twitter对快速事件处理有极大的兴趣。
MatlabMatlab可以说是历久不衰,即使它标价很高;在非常特定的利基市场它使用的相当广泛,包括密集的研究机器学习、信号处理、图像辨识等等。
OctaveOctave和Matlab很像,除了它是免费的之外。然而,在学术信号处理的圈子,几乎都会提到它。
GOGO是另一个逐渐兴起的新进者,从Google开发出来的,放宽点说,它是从C语言来的,并且在建立强大的基础架构上,渐渐地成为Java和Python的竞争者。
这么多的软件可以使用,但我认为不见得每个都一定要会才行,知道你的目标和方向是什么,就选定一个最适合的工具使用吧!可以帮助你提升效率又达到精准的结果。
以上是小编为大家分享的关于大数据处理需要用到的九种编程语言的相关内容,更多信息可以关注环球青藤分享更多干货
❺ 大数据开发工具有哪些
大数据研究的出现,为企业、研究机构、政府决策提供了新的行之有效思路和手段,想要做好大数据的管理和分析,一些大数据开发工具 的使用是必不可少的,以下是大数据开发过程中常用的工具:
1. Apache Hive
Hive是一个建立在Hadoop上的开源数据仓库基础设施,通过Hive可以很容易的进行数据的ETL,对数据进行结构化处理,并对Hadoop上大数据文件进行查询和处理等。 Hive提供了一种简单的类似SQL的查询语言—HiveQL,这为熟悉SQL语言的用户查询数据提供了方便。
2. Apache Spark
Apache Spark是Hadoop开源生态系统的新成员。它提供了一个比Hive更快的查询引擎,因为它依赖于自己的数据处理框架而不是依靠Hadoop的HDFS服务。同时,它还用于事件流处理、实时查询和机器学习等方面。
3. Jaspersoft BI 套件
Jaspersoft包是一个通过数据库列生成报表的开源软件。行业领导者发现Jaspersoft软件是一流的, 许多企业已经使用它来将SQL表转化为pdf,,这使每个人都可以在会议上对其进行审议。另外,JasperReports提供了一个连接配置单元来替代HBase。
4. Keen IO
Keen IO是个强大的移动应用分析工具。开发者只需要简单到一行代码, 就可以跟踪他们想要的关于他们应用的任何信息。开发者接下来只需要做一些Dashboard或者查询的工作就可以了。
5. Mortar Data
Mortar Data是专为开发者打造的Hadoop开发平台,它用Pig和Python的组合替代了MapRece以便开发者能简单地编写Hadoop管道(Pipeline)。
6. Placed Analytics
利用脚本语言以及API, PlacedAnalytics能够提供针对移动和网络应用的详细用户行为分析。包括, 用户使用时间和地理位置信息。 这些可以帮助开发者的应用更好地吸引广告商, 也可以帮助开发者对自己的应用进行改善。
7. Ingres Corp
它拥有超过一万客户而且正在扩增。它通过Vectorwise以及对ParAccel实现了扩展。这些发展分别导致了Actian Vector和Actian Matrix的创建。它有Apache,Cloudera,Hortonworks以及其他发行版本可供选择。
8. Talend Open Studio
Talend是一个统一的平台,它通过提供一个统一的,跨企业边界生命周期管理的环境,使数据管理和应用更简单便捷。这种设计可以帮助企业构建灵活、高性能的企业架构,在次架构下,集成并启用百分之百开源服务的分布式应用程序变为可能。
9. Cloudera
Cloudera正在努力为开源Hadoop,提供支持,Hadoop可以作为目标数据仓库,高效的数据平台,或现有数据仓库的ETL来源。企业规模可以用作集成Hadoop与传统数据仓库的基础。 Cloudera致力于成为数据管理的“重心”。
10. Pentaho Business Analytics
Pentaho的工具可以连接到NoSQL数据库,有很多内置模块,可以把它们拖放到一个图片上, 然后将它们连接起来。
工具的熟练使用可以起到事半功倍的效果,以上仅仅是一些数据开发过程中常用的工具,对于大数据开发人员来说是需要熟练掌握的,当然,大数据开发 过程中也会需要借助一些其他的工具,这就需要大数据开发人员 具有发现和解决问题的能力,以及养成善于积累的习惯!
❻ 大数据开发常用的编程语言有哪些
1、Python语言
如果你的数据科学家不使用R,他们可能就会彻底了解Python。十多年来,Python在学术界当中一直很流行,尤其是在自然语言处理(NLP)等领域。因而,如果你有一个需要NLP处理的项目,就会面临数量多得让人眼花缭乱的选择,包括经典的NTLK、使用GenSim的主题建模,或者超快、准确的spaCy。同样,说到神经网络,Python同样游刃有余,有Theano和Tensorflow;随后还有面向机器学习的scikit-learn,以及面向数据分析的NumPy和Pandas。
还有Juypter/iPython――这种基于Web的笔记本服务器框架让你可以使用一种可共享的日志格式,将代码、图形以及几乎任何对象混合起来。这一直是Python的杀手级功能之一,不过这年头,这个概念证明大有用途,以至于出现在了奉行读取-读取-输出-循环(REPL)概念的几乎所有语言上,包括Scala和R。
Python往往在大数据处理框架中得到支持,但与此同时,它往往又不是“一等公民”。比如说,Spark中的新功能几乎总是出现在Scala/Java绑定的首位,可能需要用PySpark编写面向那些更新版的几个次要版本(对Spark Streaming/MLLib方面的开发工具而言尤为如此)。
与R相反,Python是一种传统的面向对象语言,所以大多数开发人员用起来会相当得心应手,而初次接触R或Scala会让人心生畏惧。一个小问题就是你的代码中需要留出正确的空白处。这将人员分成两大阵营,一派觉得“这非常有助于确保可读性”,另一派则认为,我们应该不需要就因为一行代码有个字符不在适当的位置,就要迫使解释器让程序运行起来。
2、R语言
在过去的几年时间中,R语言已经成为了数据科学的宠儿——数据科学现在不仅仅在书呆子一样的统计学家中人尽皆知,而且也为华尔街交易员,生物学家,和硅谷开发者所家喻户晓。各种行业的公司,例如Google,Facebook,美国银行,以及纽约时报都使用R语言,R语言正在商业用途上持续蔓延和扩散。
R语言有着简单而明显的吸引力。使用R语言,只需要短短的几行代码,你就可以在复杂的数据集中筛选,通过先进的建模函数处理数据,以及创建平整的图形来代表数字。它被比喻为是Excel的一个极度活跃版本。
R语言最伟大的资本是已围绕它开发的充满活力的生态系统:R语言社区总是在不断地添加新的软件包和功能到它已经相当丰富的功能集中。据估计,超过200万的人使用R语言,并且最近的一次投票表明,R语言是迄今为止在科学数据中最流行的语言,被61%的受访者使用(其次是Python,39%)。
3、JAVA
Java,以及基于Java的框架,被发现俨然成为了硅谷最大的那些高科技公司的骨骼支架。 “如果你去看Twitter,LinkedIn和Facebook,那么你会发现,Java是它们所有数据工程基础设施的基础语言,”Driscoll说。
Java不能提供R和Python同样质量的可视化,并且它并非统计建模的最佳选择。但是,如果你移动到过去的原型制作并需要建立大型系统,那么Java往往是你的最佳选择。
4、Hadoop和Hive
一群基于Java的工具被开发出来以满足数据处理的巨大需求。Hadoop作为首选的基于Java的框架用于批处理数据已经点燃了大家的热情。Hadoop比其他一些处理工具慢,但它出奇的准确,因此被广泛用于后端分析。它和Hive——一个基于查询并且运行在顶部的框架可以很好地结对工作。