❶ 工作中如何进行数据分析---用数据来发现问题和机会
数据分析怎么做?做一份数据分析前必须明白数据分析遵循的原则,然后按照常规数据分析步骤进行。
1、数据分析遵循的原则:
① 数据分析为了验证假设的问题,提供必要的数据验证;
② 数据分析为了挖掘更多的问题,并找到原因;
③ 不能为了做数据分析而坐数据分析。
2、步骤:
① 调查研究:收集、分析、挖掘数据
② 图表分析:分析、挖掘的结果做成图表
3、常用方法:
利用数据挖掘进行数据分析常用的方法主要有分类、回归分析、聚类、关联规则、特征、变化和偏差分析、Web页挖掘等, 它们分别从不同的角度对数据进行挖掘。
① 分类。分类是找出数据库中一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到某个给定的类别。它可以应用到客户的分类、客户的属性和特征分析、客户满意度分析、客户的购买趋势预测等,如一个汽车零售商将客户按照对汽车的喜好划分成不同的类,这样营销人员就可以将新型汽车的广告手册直接邮寄到有这种喜好的客户手中,从而大大增加了商业机会。
② 回归分析。回归分析方法反映的是事务数据库中属性值在时间上的特征,产生一个将数据项映射到一个实值预测变量的函数,发现变量或属性间的依赖关系,其主要研究问题包括数据序列的趋势特征、数据序列的预测以及数据间的相关关系等。它可以应用到市场营销的各个方面,如客户寻求、保持和预防客户流失活动、产品生命周期分析、销售趋势预测及有针对性的促销活动等。
③ 聚类。聚类分析是把一组数据按照相似性和差异性分为几个类别,其目的是使得属于同一类别的数据间的相似性尽可能大,不同类别中的数据间的相似性尽可能小。它可以应用到客户群体的分类、客户背景分析、客户购买趋势预测、市场的细分等。聚类分析的方法可以学习CPDA数据分析的课程。
④ 关联规则。关联规则是描述数据库中数据项之间所存在的关系的规则,即根据一个事务中某些项的出现可导出另一些项在同一事务中也出现,即隐藏在数据间的关联或相互关系。在客户关系管理中,通过对企业的客户数据库里的大量数据进行挖掘,可以从大量的记录中发现有趣的关联关系,找出影响市场营销效果的关键因素,为产品定位、定价与定制客户群,客户寻求、细分与保持,市场营销与推销,营销风险评估和诈骗预测等决策支持提供参考依据。
⑤ 特征。特征分析是从数据库中的一组数据中提取出关于这些数据的特征式,这些特征式表达了该数据集的总体特征。如营销人员通过对客户流失因素的特征提取,可以得到导致客户流失的一系列原因和主要特征,利用这些特征可以有效地预防客户的流失。
⑥ 变化和偏差分析。偏差包括很大一类潜在有趣的知识,如分类中的反常实例,模式的例外,观察结果对期望的偏差等,其目的是寻找观察结果与参照量之间有意义的差别。在企业危机管理及其预警中,管理者更感兴趣的是那些意外规则。意外规则的挖掘可以应用到各种异常信息的发现、分析、识别、评价和预警等方面。
⑦验证假设和结果的关系。数据分析的结果是不是合理,是不是符合逻辑要求,是不是和假设的原因一致,为什么会有结果和假设不相符合的,这些都是最后的报告听取者可能问的问题,同时也是进行数据分析得到的问题的症结所在。
❷ 如何做好数据分析的数据采集工作
数据分析离不开数据采集。数据采集包括历史数据的采集和当前市场数据的采集,是科学进行数据分析的基础。数据采集准确性决定了数据分析的价值。那么数据采集是怎么做的呢?一般来说,是需要制定市场研究的计划、明确数据的来源、明确抽样方案、明确数据采集方法、做好数据处理分析工作这四项工作。
1.制定市场调研的计划
在进行数据分析之前,数据采集工作是一项最重要的工作,数据采集的工作能够解决企业经营中在数据分析中的决策问题。因此很多企业非常重视数据采集,但是数据采集是需要花费大量的金钱人力以及物力,不过数据采集能够给数据带来极大的好处,这是因为数据采集能够给大数据分析带来极大的好处。所以,在数据采集工作的时候一定要让资金花到有用的地方,对于每一分钱都有一个清楚的去向。所以,在数据采集的时候一定要控制好成本,在做数据采集工作之前一定要控制到成本,只有做好周密的市场调研计划,才能够好好的做好数据采集这一个工作。
2.明确数据来源
在数据采集前,就需要选择好数据,选择一些干净的数据才能够使得数据分析工作变得更加精准。通常来说,数据的资料一般分为第一手资料和第二手资料。这是根据数据资料的来源不同来决定。什么是第一手资料呢?第二手资料是什么呢?第一手资料就是未来某种目的采集所得的原始材料。一般来说,采集第一手资料所需要的费用比较高,但是第一手的资料的准确性很高,这是因为第一手资料的针对性强。第二手资料是指采集的现成资料。现成资料就是包括互联网上面的信息,各种报刊书本上的资料,还有各类权威机构发布的统计和研究报告等。
3.明确抽样方案
在一手数据的采集中,许多数据可以直接采集,由于对于成本费用等可控制的要素,以及数据的采集范围很广,这样很难直接获取全部数据。这时,我们常用抽样技术对样本进行调查,并根据样本统计量估计总量。
4.明确数据采集方法
数据采集方法现在常见的有三种,分别是访问调查法、实验法和观察法。访问调查法通过访问代表性的样本而获得数据,而观察法强调非语言方式,这一点和访问调查法不一样。观察法是通过调查人员在进行时和过去时记录中采集信息。而实验法可以有效控制调查的环境。这样在实际项目数据采集中可以根据项目特点、成本费用、时间及精度的要求,从而使用不同的方法。
5.数据处理及分析
在进行数据处理工作时,原始数据收集回来很大概率会出现虚假、错误、冗余等现象,如果直接把这些数据进行预测分析,极大概率会带来错误的分析结论,那么数据分析就完全没有了意义。不过只要做好数据处理以及数据分析,就能避免上面出现的现象。而数据的处理是需要运用科学正确客观的方法,将调查所得的原始资料按调查目的来去粗取精,这样才能够做好数据分析。
通过上面的内容,大家已经知道了数据采集是怎么做的了吧?数据采集程序就是上面提到的5点,分别是制定市场研究的计划、明确数据的来源、明确抽样方案、明确数据采集方法、做好数据处理分析工作。只要集齐这些步骤一步一步走下去,那么数据采集工作就可以更高效率地完成了。希望阅读完的朋友对你们的职业生涯有一些帮助,这将是我莫大的荣幸!
❸ 大数据时代,数据如何应用
近年来,大数据不断向世界的各行各业渗透,影响着我们的衣食住行。例如,网上购物时,经常会发现电子商务门户网站向我们推荐商品,往往这类商品都是我们最近需要的。这是因为用户上网行为轨迹的相关数据都会被搜集记录,并通过大数据分析,使用推荐系统将用户可能需要的物品进行推荐,从而达到精准营销的目的。下面简单介绍几种大数据的应用场景。
大数据让就医看病更简单。过去,对于患者的治疗方案,大多数都是通过医师的经验来进行,优秀的医师固然能够为患者提供好的治疗方案,但由于医师的水平不相同,所以很难保证患者都能够接受最佳的治疗方案。
而随着大数据在医疗行业的深度融合,大数据平台积累了海量的病例、病例报告、治愈方案、药物报告等信息资源.所有常见的病例、既往病例等都记录在案,医生通过有效、连续的诊疗记录,能够给病人优质、合理的诊疗方案。这样不仅提高医生的看病效率,而且能够降低误诊率,从而让患者在最短的时间接受最好的治疗。下面列举大数据在医疗行业的应用,具体如下。
(1) 优化医疗方案,提供最佳治疗方法。
面对数目及种类众多的病菌、病毒,以及肿瘤细胞时,疾病的确诊和治疗方案的确定也是很困难的。借助于大数据平台,可以搜集不同病人的疾病特征、病例和治疗方案,从而建立医疗行业的病人分类数据库。如果未来基因技术发展成熟,可以根据病人的基因序列特点进行分类,建立医疗行业的病人分类数据库。在医生诊断病人时可以参考病人的疾病特征、化验报告和检测报告,参考疾病数据库来快速帮助病人确诊,明确地定位疾病。在制订治疗方案时,医生可以依据病人的基因特点,调取相似基因、年龄、人种、身体情况相同的有效治疗方案,制订出适合病人的治疗方案,帮助更多人及时进行治疗。同时这些数据也有利于医药行业研发出更加有效的药物和医疗器械。
(2)有效预防预测疾病。
解决患者的疾病,最为简单的方式就是防患于未然。通过大数据对于群众的人体数据监控,将各自的健康数据、生命体征指标都集合在数据库和健康档案中。通过大数据分析应用,推动覆盖全生命周期的预防、治疗、康复和健康管理的一体化健康服务,这是未来卖耐健康服务管理的新趋势。当然,这一点不仅需 要医疗机构加快大数据的建设,还需要群众定期去做检查,及时更新数据,以便通过大数据来预防和预测疾病的发生,做到早治疗、早康复。当然,随着大数据的不断发展,以及在各个领域的应用,一些大规模的流感也能够通过大数据实现预测。
随着大数据技术的应用,越来越多的金融企业也开始投身到大数据应用实践中。麦肯锡的一份研究显示,金融业在大数据价值潜力指数中排名第一。下面列举若干大数据在金融行业的典型应用,具体如下。
(1) 精准营销。
银行在纯配迟互联网的冲击下,迫切需要掌握更多用户信息,继而构建用户360立体画像,即可对细分的客户进行精准营销、实时营销等个性化智慧营销。
(2) 风险管控。
应用大数据平台,可以统一管理金融企业内部多源异构数据和外部征信数据,更好地完善风控体系。内部可保证数据的完整性与安全性,外部可控制用户风险。
(3) 决策支持。
通过大数据分析方法改善经营决策,为管理层提供可靠的数据支撑,从而使经营决策更高效、敏捷、精准。
(4) 服务创新。
通过对大数据的应用,改善与客户之间的交互、增加用户黏性,为个人与政府提供增值服务,不断增强金融企业业务核心竞争力。
(5) 产品创新。
通过高端数据分析和综合化数据分享,有效对接银行、保险、信托、基金等各类金融产品,使金融做李企业能够从其他领域借鉴并创造出新的金融产品。
美国零售业曾经有这样一个传奇故事,某家商店将纸尿裤和啤酒并排放在一起销售,结果纸尿裤和啤酒的销量双双增长!为什么看起来风马牛不相及的两种商品搭配在一起,能取到如此惊人的效果呢?后来经过分析发现,这些购买者多数是已婚男士,这些男士在为小孩购买尿不湿的同时,会同时为自己购买一些啤酒。发现这个秘密后,沃尔玛超市就大胆地将啤酒摆放在尿不湿旁边,这样顾客购买的时候更方便,销量自然也会大幅上升。
之所以讲“啤酒-尿布”这个例子,其实是想告诉大家,挖掘大数据潜在的价值,是零售业竞争的核心竞争力,下面列举若干大数据在零售业的创新应用,具体如下。
(1) 精准定位零售行业市场。
企业想进人或开拓某一区域零售行业市场,首先要进行项目评估和可行性分析,只有通过项目评估和可行性分析才能最终决定是否适合进人或者开拓这块市场。通常需要分析这个区域流动人口是多少?消费水平怎么样?客户的消费习惯是什么?市场对产品的认知度怎么样?当前的市场供需情况怎么样等等,这些问题背后包含的海量信息构成了零售行业市场调研的大数据,对这些大数据的分析就是市场定位过程。
(2) 支撑行业收益管理。
大数据时代的来临,为企业收益管理工作的开展提供了更加广阔的空间。需求预测、细分市场和敏感度分析对数据需求量很大,而传统的数据分析大多采集的是企业自身的历史数据来进行预测和分析,容易忽视整个零售行业信息数据,因此难免使预测结果存在偏差。企业在实施收益管理过程中如果能在自有数据的基础上,依靠一些自动化信息采集软件来收集更多的零售行业数据,了解更多的零售行业市场信息,这将会对制订准确的收益策略,赢得更高的收益起到推进作用。
(3) 挖掘零售行业新需求。
作为零售行业企业,如果能对网上零售行业的评论数据进行收集,建立网评大数据库,然后再利用分词、聚类、情感分析了解消费者的消费行为、价值取向、评论中体现的新消费需求和企业产品质量问题,以此来改进和创新产品,量化产品价值,制定合理的价格及提高服务质量,从中获取更大的收益。
❹ 大数据处理在实际生活中有哪些应用
现在越来越多的行业和技术领域需要用到大数据分析处理系统。说到大数据处理,首先我们来好好了解一下大数据处理流程。
1.数据采集,搭建数据仓库,数据采集就是把数据通过前端埋点,接口日志调用流数据,数据库抓取,客户自己上传数据,把这些信息基础数据把各种维度保存起来,感觉有些数据没用(刚开始做只想着功能,有些数据没采集, 后来被老大训了一顿)。
2.数据清洗/预处理:就是把收到数据简单处理,比如把ip转换成地址,过滤掉脏数据等。
3.有了数据之后就可以对数据进行加工处理,数据处理的方式很多,总体分为离线处理,实时处理,离线处理就是每天定时处理,常用的有阿里的maxComputer,hive,MapRece,离线处理主要用storm,spark,hadoop,通过一些数据处理框架,可以吧数据计算成各种KPI,在这里需要注意一下,不要只想着功能,主要是把各种数据维度建起来,基本数据做全,还要可复用,后期就可以把各种kpi随意组合展示出来。
4.数据展现,数据做出来没用,要可视化,做到MVP,就是快速做出来一个效果,不合适及时调整,这点有点类似于Scrum敏捷开发,数据展示的可以用datav,神策等,前端好的可以忽略,自己来画页面。
大数据处理在各行业的渗透越来越深入,例如金融行业需要使用大数据系统结合 VaR(value at risk) 或者机器学习方案进行信贷风控,零售、餐饮行业需要大数据系统实现辅助销售决策,各种 IOT 场景需要大数据系统持续聚合和分析时序数据,各大科技公司需要建立大数据分析中台等等。
❺ 如何让生产一线的数据采集工作更为高效和轻松
MDC™ (Manufacturing Data Collection & Status Management)是一套用来实时采集、并报表化和图表化车间的详细制造数据和过程的软硬件解决方案。
盖勒普MDC™ 通过多种灵活的方法获取生产现场的实时数据(包括设备、人员和生产任务等),将其存储在Access , SQL 和 Oracle 等数据库,并以国内外先进的精益制造(Lean Manufacturing)管理理念为基础,结合系统自带的近100种专用计算、分析和统计方法,以25,000多种报告和图表直观反映当前或过去某段 时间的生产状况,帮助企业生产部门通过反馈信息做出科学和有效的决策。
为何需要使用 MDC系统?
MDC™ 可以帮助公司负责生产和设备管理部门的决策者回答很多现时制造方面的疑难问题,从而帮助改善和优化生产工艺过程。这些问题诸如:
◆ 现时生产中正在进行的是哪些工作或生产哪些部件?
◆ 有多少零部件在生产过程中已经报废?
◆ 谁在进行零部件的生产?哪一班?
◆ 零部件的生产时间如何?
◆ 零部件当前正在哪一台机器上制造?设备是在加工中、故障还是空闲着?
◆ 生产停止的原因是什么?
◆ 产量是由于哪些原因下降?
◆ 停工时间的成本怎样?
◆ 生产绩效分析。
◆ 等等
所有这些问题的答案都可以从任何一台计算机上显示出来,并且可以衍生到企业任何一个管理层的细节。例如,一个位于上海总公司的生产主管,可以第一时间 看到苏州分厂每台设备的生产状况,包括处于何种状态,在加工和组装哪个零部件,哪个人员在操作,正在完成哪个工单以及客户信息等。这些数据或近期结果都可 以和原来的工作运行情况作对比。生产的实时信息反馈是企业走向全球化的标志之一;实时生产细节的信息,有助于企业的管理,快速决策和提高生产效率。
主要功能
生产数据采集:盖勒普MDC™ (Manufacturing Data Collection)可以根据您的工作、人员及机器设备这三大主要资源的数据进行收集和生成相应的报表。当有关数据被采集后的几秒钟内,所有盖勒普MDC™ 产生的报表或图表都能精确地反映生产车间当前的运作状态 , 并同时向整个企业提供相关的信息资料。例如, 企业MDC联网的机器 (CNC等) 运行状态报告可以显示出当前每台机器的工作状态:包括可知道是否空闲、状态设置如何、正在运行中或是出了故障了等等。除此以外,它还可以显示当前执行任务 的信息和机器的操作者。每一台计算机上安装的盖勒普MDC™ 最多能够同时监测 4096 台数控机床设备。
强大的数据采集和设备监控:将盖勒普MDC™与您的盖勒普DNC™ 结合起来,可以使您现存的 DNC 网络对机器设备实现自动的监测。您现有的条形码读码器、DNC 交换机、Flex 系列交换机和 Grizzly 专用网络电缆会支持 盖勒普MDC™ 的运行。盖勒普MDC™ 分别支持基于软件和硬件的机器设备监测或支持同时基于软件和硬件的混合监测方法。基于软件的 盖勒普MDC™ 机器监测方法可以解决很多基于硬件的机器监测方法(如 PLC 装置)所遇到的问题。盖勒普MDC的解决方案是开放式的,它很容易安装,消除你对过度修改 CNC 控制器、失去保修和对未来维护方面的担心。自动数据采集不但提高了数据的精确度,还极大地将生产人员所需输入的数据量降到最低。
MDC采集手段:
◆ 纸质表格
◆ 专用工业自动化数据采集仪
◆ 数控设备控制器
◆ 网络上的终端PC(触摸式和非触摸式)
◆ 条码输入终端
◆ 设备端的工控机界面
◆ PLCs
◆ NC宏指令
◆ 无线PDA/PPC终端
◆ SPC实时数据输入
◆ 在线检测终端 ……
通过上述MDC采集手段单独使用或结合多种方式,以满足用户所制定的MDC采集分析需求。