导航:首页 > 数据处理 > 如何进行数据标准化

如何进行数据标准化

发布时间:2023-09-04 00:33:02

Ⅰ 几种常用数据标准化方法

评价是现代社会各领域的一项经常性的工作,是科学做出管理决策的重要依据。随着人们研究领域的不断扩大,所面临的评价对象日趋复杂,如果仅依据单一指标对事物进行评价往往不尽合理,必须全面地从整体的角度考虑问题,多指标综合评价方法应运而生。所谓多指标综合评价方法,就是把描述评价对象不同方面的多个指标的信息综合起来,并得到一个综合指标,由此对评价对象做一个整体上的评判,并进行横向或纵向比较。

而在 多指标评价体系中,由于各评价指标的性质不同,通常具有不同的量纲和数量级。当各指标间的水平相差很大时,如果直接用原始指标值进行分析,就会突出数值较高的指标在综合分析中的作用,相对削弱数值水平较低指标的作用。 因此,为了保证结果的可靠性,需要对原始指标数据进行标准化处理。

目前数据标准化方法有多种,归结起来可以分为直线型方法(如极值法、标准差法)、折线型方法(如三折线法)、曲线型方法(如半正态性分布)。不同的标准化方法,对系统的评价结果会产生不同的影响,然而不幸的是, 在数据标准化方法的选择上,还没有通用的法则可以遵循。

数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间。在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。其中最典型的就是数据的归一化处理,即将数据统一映射到[0,1]区间上,常见的数据归一化的方法有:min-max标准化(Min-max normalization),log函数转换,atan函数转换,z-score标准化(zero-mena normalization,此方法最为常用),模糊量化法。本文只介绍min-max法(规范化方法),z-score法(正规化方法),比例法(名字叫啥不太清楚,归一化方法)。

也叫离差标准化,是对原始数据的线性变换,使结果落到[0,1]区间,转换函数如下:

通过以10为底的log函数转换的方法同样可以实现归一下,具体方法看了下网上很多介绍都是 x =log10(x) ,其实是有问题的,这个结果并非一定落到[0,1]区间上, 应该还要除以log10(max) *,max为样本数据最大值,并且所有的数据都要大于等于1。

用反正切函数也可以实现数据的归一化,使用这个方法需要注意的是如果想映射的区间为[0,1],则 数据都应该大于等于0,小于0的数据将被映射到[-1,0]区间上。

而并非所有数据标准化的结果都映射到[0,1]区间上,其中最常见的标准化方法就是Z标准化;也是SPSS中最为常用的标准化方法,也叫 标准差标准化

Ⅱ 数据标准化的几种方法

在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。其中最典型的就是数据的归一化处理,即将数据统一映射到[0,1]区间上,常见的数据归一化的方法有:min-max标准化(Min-max
normalization)也叫离差标准化,是对原始数据的线性变换,使结果落到[0,1]区间,转换函数如下:其中max为样本数据的最大值,min为样本数据的最小值。log函数转换通过以10为底的log函数转换的方法同样可以实现归一下,具体方法如下:看了下网上很多介绍都是x*=log10(x),其实是有问题的,这个结果并非一定落到[0,1]区间上,应该还要除以log10(max),max为样本数据最大值,并且所有的数据都要大于等于1。而并非所有数据标准化的结果都映射到[0,1]区间上,其中最常见的标准化方法就是Z标准化,也是SPSS中最为常用的标准化方法:z-score
标准化(zero-mean
normalization)也叫标准差标准化,经过处理的数据符合标准正态分布,即均值为0,标准差为1,其转化函数为:其中μ为所有样本数据的均值,σ为所有样本数据的标准差。

Ⅲ 数据标准化有几种方法

方法一:规范化方法

也叫离差标准化,是对原始数据的线性变换,使结果映射到[0,1]区间。

方法二:正规化方法

这种方法基于原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。将A的原始值x使用z-score标准化到x’。
z-score标准化方法适用于属性A的最大值和最小值未知的情况,或有超出取值范围的离群数据的情况。
spss默认的标准化方法就是z-score标准化。
用Excel进行z-score标准化的方法:在Excel中没有现成的函数,需要自己分步计算,其实标准化的公式很简单。

步骤如下:
1.求出各变量(指标)的算术平均值(数学期望)xi和标准差si ;
2.进行标准化处理:
zij=(xij-xi)/si
其中:zij为标准化后的变量值;xij为实际变量值。
3.将逆指标前的正负号对调。
标准化后的变量值围绕0上下波动,大于0说明高于平均水平,小于0说明低于平均水平。

阅读全文

与如何进行数据标准化相关的资料

热点内容
产品副总监用英语怎么说 浏览:768
像素生存世界交易怎么解封 浏览:274
什么认证数据线好 浏览:31
ug程序顺序为什么不能拖动 浏览:968
苹果手机技术顾问是做什么工作 浏览:697
哪里能实时关注水果信息 浏览:84
代理代账行业应该怎么选 浏览:631
麻辣烫技术一般要多少钱 浏览:276
大数据与财务管理主要用什么软件 浏览:780
滴答技术怎么样 浏览:923
小学需要会哪个程序语言 浏览:563
小程序后台如何获取电子发票 浏览:462
设计和程序哪个更累 浏览:27
小程序使用量多少 浏览:551
台企技术是什么意思 浏览:133
支付宝数据清洗是什么 浏览:904
信息科技大学在哪里 浏览:633
房屋交易有哪些证件 浏览:915
上海国际登记代理怎么样 浏览:969
仲裁程序怎么撤销 浏览:773