⑴ 怎么判断用哪个回归模型
散点图表示因变量随自变量而变化的大致趋势,当要在不考虑时间的情况下比较
大量数据点时,请使用散点图。散点图中包含的数据越多,比较的效果就越好。
随着横坐标逐渐的增大,看从坐标起点开始是不是也是逐渐增大,如果是那么就是正相关,
如果不是并且相反就是负相关。分以下几种情况:1、无明显关系,散点比较散乱。
2、线性相关。可以大概的看出散点大概的排列在一条直线上下。3、非线性相关。
一般有指数相关,对数相关等。需要将数值转换为指数形式或者对数形式,重新
制作散点图确认(一般转换X轴的数据)。
⑵ 评价回归模型是否合适的方法
当你只知道一两种技巧时,生活通常是简单的。如果结果是连续的,使用线性回归;如果结果是二值的,使用逻辑回归!然而,可供选择的选项越多,选择合适的答案就越困难。类似的情况也发生在回归模型选择中。
1、在多种类型的回归模型中,基于自变量和因变量的类型、数据维数和数据的其它本质特征,选择最合适的技术是很重要的。以下是如何选择合适的回归模型的几点建议:
(1)数据挖掘是建立预测模型不可缺少的环节。这应该是选择正确的模型的第一步,比如确定各变量的关系和影响。
(2)比较适合于不同模型的拟合程度,我们可以分析它们不同的指标参数,例如统计意义的参数,R-square,Adjusted R-square,AIC,BIC 以及误差项,另一个是 Mallows’ Cp 准则。通过将模型与所有可能的子模型进行对比(或小心地选择他们),检查模型可能的偏差。
(3)交叉验证是评价预测模型的最佳方法。你可以将数据集分成两组(训练集和验证集)。通过衡量观测值和预测值之间简单的均方差就能给出预测精度的度量。
(4)如果数据集有多个混合变量,则不应使用自动模型选择方法,因为不希望同时将这些混合变量放入模型中。
(5)这也取决于你的目标。与高度统计学意义的模型相比,简单的模型更容易实现。
(6)回归正则化方法(LasSo、Ridge 和 ElasticNet)在数据集是高维和自变量是多重共线性的情况下工作良好。
2、什么是回归分析?回归分析是一种预测建模技术的方法,研究因变量(目标)和自变量(预测器)之前的关系。这一技术被用在预测、时间序列模型和寻找变量之间因果关系。
3、有哪些回归类型呢?
(1) 线性回归(Linear Regression)
线性回归是最为人熟知的建模技术,是人们学习如何预测模型时的首选之一。在此技术中,因变量是连续的,自变量可以是连续的也可以是离散的。回归的本质是线性的。
线性回归通过使用最佳的拟合直线(又被称为回归线),建立因变量(Y)和一个或多个自变量(X)之间的关系。
它的表达式为:Y=a+b*X+e,其中 a 为直线截距,b 为直线斜率,e 为误差项。如果给出了自变量 X,就能通过这个线性回归表达式计算出预测值,即因变量 Y。
(2)逻辑回归用来计算事件成功(Success)或者失败(Failure)的概率。当因变量是二进制(0/1,True/False,Yes/No)时,应该使用逻辑回归。这里,Y 的取值范围为 [0,1],它可以由下列等式来表示。
其中,p 是事件发生的概率。你可能会有这样的疑问“为什么在等式中使用对数 log 呢?”
因为我们这里使用的二项分布(因变量),所以需要选择一个合适的激活函数能够将输出映射到 [0,1] 之间,Logit 函数满足要求。在上面的等式中,通过使用最大似然估计来得到最佳的参数,而不是使用线性回归最小化平方误差的方法。
⑶ 回归模型的几个评价指标
回归模型的几个评价指标
对于回归模型效果的判断指标经过了几个过程,从SSE到R-square再到Ajusted R-square, 是一个完善的过程:
SSE(误差平方和):The sum of squares e to errorR-square(决定系数):Coefficient of determinationAdjusted R-square:Degree-of-freedom adjusted coefficient of determination下面我对以上几个名词进行详细的解释下,相信能给大家带来一定的帮助!!一、SSE(误差平方和)
计算公式如下:
同样的数据集的情况下,SSE越小,误差越小,模型效果越好
缺点:
SSE数值大小本身没有意义,随着样本增加,SSE必然增加,也就是说,不同的数据集的情况下,SSE比较没有意义
二、R-square(决定系数)
数学理解:分母理解为原始数据的离散程度,分子为预测数据和原始数据的误差,二者相除可以消除原始数据离散程度的影响
其实“决定系数”是通过数据的变化来表征一个拟合的好坏。
理论上取值范围(-∞,1], 正常取值范围为[0 1] ------实际操作中通常会选择拟合较好的曲线计算R?,因此很少出现-∞
越接近1,表明方程的变量对y的解释能力越强,这个模型对数据拟合的也较好越接近0,表明模型拟合的越差
经验值:>0.4, 拟合效果好
缺点:
数据集的样本越大,R?越大,因此,不同数据集的模型结果比较会有一定的误差
三、Adjusted R-Square (校正决定系数)
n为样本数量,p为特征数量
消除了样本数量和特征数量的影响
⑷ 四种回归模型中,哪种回归模型拟合度最好为什么这么说
如果只是比对多种回归模型哪个好,那就选曲线估计,可同时选中线性,二次方等11个模型,拟合度看R2就行,哪个大哪个好。结果中有散点图也可以很直观看出哪种变化模型符合的。 不过一般做回归,首先要考虑的是线性回归,用途最广。 还有用的比较多的是非线性,这个要知道方程的。 至于多项Loistic和probit,说实在的我也不太清楚,书上学的没着重讲,案例分析也不常见。 这些模型都比较专业的,适用某些特定领域,选择的话有文献参照就直接借鉴好了。
⑸ 如何确定一个模型是线性回归还是非线性回归
线性回归模型和非线性回归模型的区别是:
线性就是每个变量的指数都是1,而非线性就是至少有一个变量的指数不是1。
通过指数来进行判断即可。
线性回归模型,是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。其表达形式为y = w'x+e,e为误差服从均值为0的正态分布。线性回归模型是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归。
非线性回归,是在掌握大量观察数据的基础上,利用数理统计方法建立因变量与自变量之间的回归关系函数表达式(称回归方程式)。回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。
⑹ 回归分析的结果怎么看
可以使用在线spss平台SPSSAU进行分析,结果比较容易解读。
B值:用于判断X对Y的影响关系方向及影响程度
回归系数B值大于0说明正向影响,反之负向影响,以及通过B值大小对比X对Y的影响程度大小。
P值:如果P<0.05,则说明具有影响关系,反之无影响关系。
R方:用于判断模型情况
VIF值:判断模型共线性问题
F检验:用于判定是否X中至少有一个对Y产生影响,如果呈现出显着性,则说明所有X中至少一个会对Y产生影响关系。
具体说明可查看spssau输出的智能文字分析结果。
⑺ 如何确定应该使用哪种回归分析方法
回归有很多种,回归研究X对于Y的影响,至于回归方法的选择上,关键在于因变量Y的数据类型,如果Y是离散数据,则统一应该使用logistic回归,但具体logistic回归又分成三种类型。
⑻ 如何分析回归模型的拟合度和显着性
模型的拟合度是用R和R方来表示的,一般大于0.4就可以了;自变量的显着性是根据各个自变量系数后面的Sig值判断的,如果小于0.05可以说在95%的显着性水平下显着,小于0.01就可以说在99%的显着性水平下显着了。如果没有给出系数表,是看不到显着性如何的。
回归分析(regression analysis)是研究一个变量(被解释变量)关于另一个(些)变量(解释变量)的具体依赖关系的计算方法和理论。 从一组样本数据出发,确定变量之间的数学关系式对这些关系式的可信程度进行各种统计检验,并从影响某一特定变量的诸多变量中找出哪些变量的影响显着,哪些不显着。利用所求的关系式,根据一个或几个变量的取值来预测或控制另一个特定变量的取值,并给出这种预测或控制的精确程度。
其用意:在于通过后者的已知或设定值,去估计和(或)预测前者的(总体)均值。
拓展资料:
回归模型(regression model)对统计关系进行定量描述的一种数学模型。如多元线性回归的数学模型可以表示为y=β0+β1*x+εi,式中,β0,β1,…,βp是p+1个待估计的参数,εi是相互独立且服从同一正态分布N(0,σ2)的随机变量,y是随机变量;x可以是随机变量,也可以是非随机变量,βi称为回归系数,表征自变量对因变量影响的程度。
(资料来源:网络:回归模型)
⑼ 如何判断一组数据符合线性关系
用最小二乘法,具体做法太复杂,就不细说了,可以去图书馆找本物理实验方面的书,上面有介绍,也可以在网上搜一下
⑽ 回归分析结果怎么分析
从一组数据出发,确定某些变量之间的定量关系式,即建立数学模型并估计其中的未知参数。估计参数的常用方法是最小二乘法。对这些关系式的可信程度进行检验。
在许多自变量共同影响着一个因变量的关系中,判断哪个(或哪些)自变量的影响是显着的,哪些自变量的影响是不显着的,将影响显着的自变量加入模型中,而剔除影响不显着的变量,通常用逐步回归、向前回归和向后回归等方法。
利用所求的关系式对某一生产过程进行预测或控制。回归分析的应用是非常广泛的,统计软件包使各种回归方法计算十分方便。
(10)怎么判断数据符合哪个回归模型扩展阅读
回归分析法进行预测首先要对各个自变量做出预测。若各个自变量可以由人工控制或易于预测,而且回归方程也较为符合实际,则应用回归预测是有效的,否则就很难应用。
为使回归方程较能符合实际,首先应尽可能定性判断自变量的可能种类和个数,并在观察事物发展规律的基础上定性判断回归方程的可能类型;其次,力求掌握较充分的高质量统计数据,再运用统计方法,利用数学工具和相关软件从定量方面计算或改进定性判断。