㈠ MySql索引之哪些情况适合创建索引
说明:不要以为唯一索引影响了 insert 速度,这个速度损耗可以忽略,但提高查找速度是明显的。
某个字段在SELECT语句的 WHERE 条件中经常被使用到,那么就需要给这个字段创建索引了。尤其是在
数据量大的情况下,创建普通索引就可以大幅提升数据查询的效率。
比如student_info数据表(含100万条数据),假设我们想要查询 student_id=123110 的用户信息。
索引就是让数据按照某种顺序进行存储或检索,因此当我们使用 GROUP BY 对数据进行分组查询,或者
使用 ORDER BY 对数据进行排序的时候,就需要 对分组或者排序的字段进行索引 。如果待排序的列有多
个,那么可以在这些列上建立 组合索引 。
对数据按照某个条件进行查询后再进行 UPDATE 或 DELETE 的操作,如果对 WHERE 字段创建了索引,就
能大幅提升效率。原理是因为我们需要先根据 WHERE 条件列检索出来这条记录,然后再对它进行更新或
删除。如果进行更新的时候,更新的字段是非索引字段,提升的效率会更明显,这是因为非索引字段更
新不需要对索引进行维护。
有时候我们需要对某个字段进行去重,使用 DISTINCT,那么对这个字段创建索引,也会提升查询效率。
比如,我们想要查询课程表中不同的 student_id 都有哪些,如果我们没有对 student_id 创建索引,执行
SQL 语句:
运行结果(600637 条记录,运行时间 0.683s ):
如果我们对 student_id 创建索引,再执行 SQL 语句:
运行结果(600637 条记录,运行时间 0.010s ):
你能看到 SQL 查询效率有了提升,同时显示出来的 student_id 还是按照 递增的顺序 进行展示的。这是因
为索引会对数据按照某种顺序进行排序,所以在去重的时候也会快很多。
首先, 连接表的数量尽量不要超过 3 张 ,因为每增加一张表就相当于增加了一次嵌套的循环,数量级增
长会非常快,严重影响查询的效率。
其次, 对 WHERE 条件创建索引 ,因为 WHERE 才是对数据条件的过滤。如果在数据量非常大的情况下,
没有 WHERE 条件过滤是非常可怕的。
最后, 对用于连接的字段创建索引 ,并且该字段在多张表中的 类型必须一致 。比如 course_id 在
student_info 表和 course 表中都为 int(11) 类型,而不能一个为 int 另一个为 varchar 类型。
举个例子,如果我们只对 student_id 创建索引,执行 SQL 语句:
运行结果(1 条数据,运行时间 0.189s ):
这里我们对 name 创建索引,再执行上面的 SQL 语句,运行时间为 0.002s 。
创建一张商户表,因为地址字段比较长,在地址字段上建立前缀索引
问题是,截取多少呢?截取得多了,达不到节省索引存储空间的目的;截取得少了,重复内容太多,字
段的散列度(选择性)会降低。 怎么计算不同的长度的选择性呢?
先看一下字段在全部数据中的选择度:
通过不同长度去计算,与全表的选择性对比:
公式:
例如:
引申另一个问题:索引列前缀对排序的影响
拓展:Alibaba《Java开发手册》
【 强制 】在 varchar 字段上建立索引时,必须指定索引长度,没必要对全字段建立索引,根据实际文本
区分度决定索引长度。
说明:索引的长度与区分度是一对矛盾体,一般对字符串类型数据,长度为 20 的索引,区分度会 高达
90% 以上 ,可以使用 count(distinct left(列名, 索引长度))/count(*)的区分度来确定。
这样也可以较少的建立一些索引。同时,由于"最左前缀原则",可以增加联合索引的使用率。
结论:在数据表中的数据行数比较少的情况下,比如不到 1000 行,是不需要创建索引的。
举例1:要在 100 万行数据中查找其中的 50 万行(比如性别为男的数据),一旦创建了索引,你需要先
访问 50 万次索引,然后再访问 50 万次数据表,这样加起来的开销比不使用索引可能还要大。
举例2:假设有一个学生表,学生总数为 100 万人,男性只有 10 个人,也就是占总人口的 10 万分之 1。
学生表 student_gender 结构如下。其中数据表中的 student_gender 字段取值为 0 或 1,0 代表女性,1 代
表男性。
如果我们要筛选出这个学生表中的男性,可以使用:
运行结果(10 条数据,运行时间 0.696s ):
结论:当数据重复度大,比如 高于 10% 的时候,也不需要对这个字段使用索引。
例如身份证、UUID(在索引比较时需要转为ASCII,并且插入时可能造成页分裂)、MD5、HASH、无序长字
符串等。
① 冗余索引
举例:建表语句如下
我们知道,通过 idx_name_birthday_phone_number 索引就可以对 name 列进行快速搜索,再创建一
个专门针对 name 列的索引就算是一个 冗余索引 ,维护这个索引只会增加维护的成本,并不会对搜索有
什么好处。
② 重复索引
另一种情况,我们可能会对某个列 重复建立索引 ,比方说这样:
我们看到,col1 既是主键、又给它定义为一个唯一索引,还给它定义了一个普通索引,可是主键本身就
会生成聚簇索引,所以定义的唯一索引和普通索引是重复的,这种情况要避免。
欢迎共同进步:
QQ群:1007576722
https://huchao.blog.csdn.net/article/details/124220802?spm=1001.2014.3001.5502
㈡ 数据库索引有哪几种怎样建立索引
种类:
1、按照索引列值的唯一性,索引可分为唯一索引和非唯一索引;
非唯一索引:
create index 索引名 on 表名(列名) tablespace表空间名;
唯一索引:
建立主键或者唯一约束时会自动在对应的列上建立唯一索引;
2、索引列的个数:单列索引和复合索引;
3、按照索引列的物理组织方式。
索引的创建格式:
CREATEUNIUQE|BITMAPINDEX<schema>.<index_name>ON<schema>.<table_name>(<column_name>|<expression>ASC|DESC,<column_name>|<expression>ASC|DESC,...)TABLESPACE<tablespace_name>STORAGE<storage_settings>LOGGING||COMPRESS<nn>NOSORT|REVERSEPARTITION|GLOBALPARTITION<partition_setting>
使用USER_IND_COLUMNS查询某个TABLE中的相应字段索引建立情况
使用DBA_INDEXES/USER_INDEXES查询所有索引的具体设置情况。
在Oracle中的索引可以分为:B树索引、位图索引、反向键索引、基于函数的索引、簇索引、全局索引、局部索引等,下面逐一讲解:
一、B树索引:
最常用的索引,各叶子节点中包括的数据有索引列的值和数据表中对应行的ROWID,简单的说,在B树索引中,是通过在索引中保存排过续的索引列值与相对应记录的ROWID来实现快速查询的目的。其逻辑结构如图:
可以保证无论用户要搜索哪个分支的叶子结点,都需要经过相同的索引层次,即都需要相同的I/O次数。
B树索引的创建示例:
create index ind_t on t1(id);
注1:索引的针对字段创建的,相同字段不能创建一个以上的索引;
注2:默认的索引是不唯一的,但是也可以加上unique,表示该索引的字段上没有重复值(定义unique约束时会自动创建);
注3:创建主键时,默认在主键上创建了B树索引,因此不能再在主键上创建索引。
二、位图索引:
有些字段中使用B树索引的效率仍然不高,例如性别的字段中,只有“男、女”两个值,则即便使用了B树索引,在进行检索时也将返回接近一半的记录。
所以当字段的基数很低时,需要使用位图索引。(“低”的标准是取值数量 < 行数*1%)
反向键索引是一种特殊的B树索引,在存储构造中与B树索引完全相同,但是针对数值时,反向键索引会先反向每个键值的字节,然后对反向后的新数据进行索引。例如输入2008则转换为8002,这样当数值一次增加时,其反向键在大小中的分布仍然是比较平均的。
反向键索引的创建示例:
createindex ind_t on t1(id) reverse;
注:键的反转由系统自行完成。对于用户是透明的。
四、基于函数的索引:
有的时候,需要进行如下查询:select * from t1 where to_char(date,'yyyy')>'2007';
但是即便在date字段上建立了索引,还是不得不进行全表扫描。在这种情况下,可以使用基于函数的索引。其创建语法如下:
create index ind_t on t1(to_char(date,'yyyy'));
注:简单来说,基于函数的索引,就是将查询要用到的表达式作为索引项。
五、全局索引和局部索引:
这个索引貌似很复杂,其实很简单。总得来说一句话,就是无论怎么分区,都是为了方便管理。
具体索引和表的关系有三种:
1、局部分区索引:分区索引和分区表1对1
2、全局分区索引:分区索引和分区表N对N
3、全局非分区索引:非分区索引和分区表1对N
创建示例:
首先创建一个分区表
createtable student
(
stuno number(5),
sname vrvhar2(10),
deptno number(5)
)
partition by hash (deptno)
(
partition part_01 tablespace A1,
partition part_02 tablespace A2
);
创建局部分区索引(1v1):
create index ind_t on student(stuno)
local(
partition part_01 tablespace A2,
partition part_02 tablespace A1
);--local后面可以不加
创建全局分区索引(NvN):
create index ind_t on student(stuno)
globalpartition by range(stuno)
(
partition p1 values less than(1000) tablespace A1,
partition p2 values less than(maxvalue) tablespace A2
);--只可以进行range分区
创建全局非分区索引(1vN)
createindex ind_t on student(stuno) GLOBAL;