‘壹’ 企业如何进行数据化管理
导语:对于企业来讲,数据化运用和管理无处不在,无论是企业日常运营,还是企业的营销企划,都是企业所有管理者或经营者无可否认的重要命题。那么企业如何进行数据化管理,一起了解一下吧!
然而,做好数据化应用,是一件系统而又复杂的课题。企业如何真正把生产计划、营销战略、财务战略、经营战略等体系有效的结合运用是非常考验管理者知识智慧的。但有的企业主根本无视统计管理、数据分析与经营和营销的关联性。
在当今强调竞争优势的经济环境中,如果不能把握精确性的专业竞争,不根据各个专业性的概率指标与企业各种资源进行整体的科学组合,就无法使资源配置得到有效利用,资源整合价值最大化就会成为一个泡影,实施数据化管理,培育企业的竞争优势就会成为一个空话。
一、明确数据化管理的基本要求
1、管理者重视数据化管理,是实施数据化管理的基本条件,管理者重视数据化,重视人的因素,确立人和数据的有效组合,充分利用数据的作用或功能,认知和使用数据的价值,调动人的积极性和主观能动性,才能构建数据化管理平台按照数据化要求开展相关工作。
2、认清数据与管理的关系。企业不重视数据管理,就无法认清数据与管理的关系。很多管理者会经常通过数据分析来比较管理效率差异的原因。如生产管理中,两个部门人员、设备、材料、时间等要素完全一致的情况下,但生产的效率不一样,我就可以通过生产流程中的数据分解,进行数据分析,就可确认是员工士气、还是员工熟练情况和或管理因素导致生产效率不同的原因。
3、采集的数据必须是真实可靠的。数据因人而存在,是从管理活动中得来。数据的采集方法和管理要有制度和流程规范,不能随心所欲,更不能估测和伪造数据。数据的真实性对企业的分析和决策非常重要。其真实性一方面要依靠人的道德行为来保证,另一方面制度的保障是不可缺少的。在双重要求下我们的数据采集才能有保障。
4、数据是连续性和系统性的。在管理活动中,数据采集不能时断时续。不能只采集某一个方面,否则影响数据的准确性和完整性,企业各业务单元或各部门可按照年度、季度、月度以及每周、每日来采集企业各方面管理和业务发生的数据,进行归纳和统计。
二、以目标管理为基础拓展数字化管理的空间
数据化管理是以财务管理和目标管理为基础,由内向外拓展的。企业在战略目标的指导下,将长期经营目标的所确定的数据向年度进行分解,年度向季度、月度分解,形成了一个金字塔式的数据链。企业各个职能部门围绕着这个时段核心数据设计自己的工作计划,确定自己所要完成数量目标。这样的数据指标就成为管理和工作的中心。工作的所有结果是为完成数量目标进行的。
从目标管理的角度来看,更多的是财务数量指标,财务指标为核心数据是毋庸质疑的,但核心数据目标的完成是由其他数据支撑的。如:企业员工的满意度,客户的满意度,销售终端增长数量的速度,企业投入新技术开发的.费用,高技术人员占员工的比例等等诸多数量指标,都是用于支持财务数据目标实现的基础。因为很多工作都是依据这些数量指标进行分解,进行分析总结,进行改进和调整。
因此,我们在进行数据管理中,各个业务单元必须让数据化向企业管理的每一个角落延伸,使其在管理流程、标准及各个模块都有数据量化的清晰足迹。这样我们围绕着数据进行工作,工作效率和效果将有更多的保障。
三、数据化运用管理必须与制度化、流程化、图表化的连接
在我们很多企业,数据化管理主要就是财务数据,和其他方面看起来似乎没有关系,实际在管理运用上,离开制度化和流程化,数据化管理就没有根基,无法进行有效管理。
数据化管理讲究的是系统分析,科学评估。
只有深刻了解其过程的每个环节及其特点,确定出标准、流程,才能够制定出科学的决策与管理办法。如生产管理中,管理者选择合适且技术熟练的工人,进行工时、动作、材料研究,在试验过程中把工人的每一项动作、每一道工序、每一种材料所使用的数据都准确记录下来,就可得出完成该项工作所需要的总时间、总材料,据此定出一个工人“合理的时、日、月工作量和材料消耗量”。并将规程和标准的操作流程编写成书面材料,按照此教育训练员工。
通过制度化的管理要求,长期不懈的执行,这样数据化在制度化的基础上与流程化、标准化连接起来。就有一个基本保障。如果同时就生产中的各个要素进行整理成规范的表格,按照规范进行填写,并规定统计、分析、上报时间,这就在生产管理中就形成数据化管理的基础。如这样的管理长期坚持,不断修正和完善,长此以往累积成企业一整套规范运作的规程与习惯,同样也可构成企业独特的核心优势。
四、必须为数据化管理的设计载体
企业都会每天产生大量的数据,如生产数据、库存数据、财务数据、产品数据,销售数据等。但其必须有一个合适的载体进行运转,使其能产生有效价值,这就需要我们设计一个载体——专业化的图表(或表单)或专业的管理软件。这样我们一方面可运用图表等工具进行整理分析,一方面可借助计算机信息软件技术进行有效快捷的管理活动,但现在许多中小企业在粗放式管理阶段还无法进行计算机软件技术的应用。因此,我们就图表工具的应用进行简要的阐述。
表单设计从非专业角度可以讲,咨询公司顾问更多使用的数据分析工具。我们管理者更多的使用的是统计工具。这就我们从财务管理和统计管理方面设计各种表格。进行归纳和总结。
企业在进行管理图表或表单设计上,必须根据自身的具体情况,设计合理和完善的表。如:日常营业表单、各类费用表单、各类经营管理表单、人力资源相关管理表单等各种表单,并将表单收集的数据按部门分、按级别分、按要求分、按经营分、按时间分等进行分类。设计好编号、类别,等级、审核、制表、抄送等相关信息。将这些信息按照标准的流程进行填写、审核、分析和管理,以便使管理活动更加富有成效。
特别是产供销一体化的企业,管理活动复杂,表单众多,在没有管理软件应用支持的情况下,这就需要管理者对一些“共性表”进行合并和筛检,对“个性表”进行优化,尽可能使表单管理简要化,一些繁杂可有可无的表单需要及时整理处置,以减少表单管理的复杂性。在进行表单等工具的设计和管理上,我们以电脑操作系统为最基础的工具,它的许多基本功能就可实现和掌握数据化管理的使用工具。
当然,如企业条件许可,也可引进管理软件的进行应用,来提高管理效率。用图表或计算机进行数据积累、数据分析、建立相关模块,同时确立分析方法、构建数学模型、设计应用系统、提供决策支持等。使用各种方法挖掘数据应用技术,管理效率会得到进一步的提升。
‘贰’ 数据分析怎么做
Step1:目标确定
这一步在工作中通常是由你的客户/上级/其他部门同事/合作方提出来的,但第一次的数据报告中,需要你自己来提出并确定目标。
选择目标时,请注意以下几点:
选择一个你比较熟悉,或者比较感兴趣的领域/行业;
选择一个范围比较小的细分领域/细分行业作为切入点;
确定这个领域/行业有公开发表的数据/可以获取的UGC内容(论坛帖子,用户点评等)。
Step2:数据获取
目标定下来了,接下来要去找相应的数据。如果你制定目标时完全遵循了第一闷漏兄步的三个注意点,那么你现在会很明确要找哪些数据。如果现在你还不确定自己需要哪些数据,那么回到第一步重来吧。
Step3:数据清洗
在工作中,90%以上的情况,你拿到的数据都需要先做清洗工作,排除异常值、空白值、无效值、重复值等等。这项工作经常会占到整个数据分析过程将近一半的时间。
如果在上一步中,你的数据是通过手工复制/下载获取的,那么通常会比较干净,不需要做太多清洗工作。但如果数据是通过爬虫等方式得来,那么你需要进行清洗,提取核心内容,去掉网页代码、标点符号等无用内容。
无论你采用哪一种方式获取数据,请记住,数据清洗永远是你必须要做的一项工作。
Step4:数据整理
清洗过后,需要进行数据整理,即将数据整理为能够进行下一步分析的格式,对于初学者,用Excel来完成这一工作就OK。
如果你的数据已经是表格形式,那么计算一些二级指标就好,比如用今年销量和去年销量算出同比增长率。鉴于你是第一次做数据报告,建议你不要计算太多复杂的二级指标,基本的同比、环比、占比分布这些就OK。
如果你收集的是一些非数字的数据,比如对商家的点评,那么你进行下一步统计之前,需要通过“关键词-标签”方式,将句子转化为标签,再对标签进行统计。
Step5:描述分析
描述分析是最基本的分析统计方法,在实际工作中也是应用最广的分析方法。描述统计分为两大部分:数据描述和指标统计。
数据描述:用来对数据进行基本情况的刻画,包括:数据总数、时间跨度、时间粒度、空间范围、空间粒度、数据来源等。如果是建模,那么还要看数据的极值、分布、离散度等内容。
指标统计:用来作报告,分析实际情况的数据指标,可粗略分为四大类:变化、分布、对比、预测;
变化:指标随时间的变动,表现为增幅(同比、环比等);
分布:指标在不同层次上的表现,包括地域分布(省、市、区县、店/网点)、用户群分布(年龄、性别、职业等)、产品分布(蚂袭如动感地带和全球通)等;
预测:根据现有情况,估计下个分析时段的指标值。
描述分析的产出是图表,下一个步骤的内容将基于这些图表产出。
Step6:洞察结论
这一步是数据报告的核心,也是最能看出数据分析师水平的部分。一个年轻的分析师和一个年迈的分析师拿到同样的图表,完全有可能解读出不同的内容。
但通常来说,即使是复杂的数据报告,也是由一个个相对简单的洞察结论组成的,这其中涉及到问题的分拆,逻辑线的建立等一系列内容。作为初学者,做到自己力所能及的程度就好。
总结一下,所谓洞察,就是要越过数据,去推测和理解真实情况。单纯描述数据,谁都会做,根据数据得出有价值的结论,报告才有意义。
Step7:报告撰写
都到这一步了,相信各位对数据报告也不再陌生了。这一步中,需要保证的是数据报告内容的完整性。
一个完整的数据报告,应至少包含以下六块内容:
报告背景
报告目的
数据来源、数量等基本情况
分页图表内容搜禅及本页结论
各部分小结及最终总结
下一步策略或对趋势的预测
其中,背景和目的决定了你的报告逻辑(解决什么问题);数据基本情况告诉对方你用了什么样的数据,可信度如何;分页内容需要按照一定的逻辑来构建,目标仍然是解决报告目的中的问题;小结及总结必不可少;下一步策略或对趋势的预测能为你的报告加分。
那么,普通难度的数据报告做法就是这样了。高深的固然要更难一些,但是普通的已经将整体的路径将的很清楚了。
‘叁’ 如何才能搭建一套完整的数据指标体系
一个好的指标体系能够让我们快速了解当前所处的阶段和环境,从而做出合理的调整决策。本文作者分享了关于如何才能搭建完整的数据指标体系,我们一起来看一下。什么是数据指标体系?数据指标体系是一套非常完整而全面、量化、易判断、有价值的分析工具。一般由用户、产品、运营三大块组成:用户:核心用户贡献价值、用户流失;产品核心任务、产品用户分析;运营:产品运营指标、产品分析等十个子系统组成
对产品的需求不是一成不变的,往往会发生一些变化。用户需求总是有变化的,如果只看到一个很小的点或是一个场景下出现多个用户数据,那么整个产品一定会被打断,甚至会出现问题。所以在指标体系的设计上下功夫很重要,这是一个大原则,但是有很多时候对于没有设计好的指标体系,我们会去关注它后面可能会导致什么。