⑴ 空间数据库建立
在遥感图像处理系统空间数据库的建立过程中,由于我们的大部分资料来源于现有的地图,因而以地图的数据处理,采用扫描矢量化的数字化手段进行数据录入,各种地图处理,数据入库工作流程可分为预处理、图形扫描数字化、图层数据建立拓扑关系、建属性数据库、图层矢量数据与属性数据联接、投影转换、图幅拼接、图面整饰、数据入库九个阶段。如图7-9所示。
图7-9 数据采集工作流程图
(1)图形预处理
资源信息是多源和多尺度的。毫无疑问,对这些资料的初步整理是数字化工作进程的重要一环。
本系统将采用统一的坐标系统,坐标系为1980西安坐标系,高程系为1985国家高程基准。所有的图形数据均应该转换到此坐标系。
(2)图形扫描数字化
在地图数据采集过程中,由于地图原图质量、内容、比例尺和扫描过程中的种种因素,根据纸介质地图的图形要素和彩色特征提取的分层图仍会带有各种噪声以及不需要的其他一些信息,为了获得正确的、干净的数据,在数字化之前,要进行二值化、去脏、光滑、断线修补、细化处理等预处理步骤。
(3)图层数据建立拓扑关系与图形编辑
矢量化后的各图层,利用ArcGIS软件提供的功能建立拓扑关系,在建拓扑关系时会发现图形数据错误,要进行编辑、修改,再重新建立拓扑关系,这一过程可能做多次,直到数据正确为止。
(4)建属性数据库
按已采集的属性数据表,和标准规定格式,利用通用的数据库管理软件建立分层数据库,文字型数据要按标准代码录入。
(5)图层矢量数据与属性数据联接
按图元编码(用户ID)将矢量数据与属性数据联接。对于已建立联接的各类空间数据和属性数据,通过ArcGIS 系统对它们做进一步的编辑和修改,确保数据库的准确性和完整性。在ArcGIS 系统中,图形数据被分成“点”、“线”、“面”三种几何要素,它们都有各自相关的属性,在进行拓扑处理后,这三种要素间便拥有了相关的空间拓扑结构,这种空间数据关系与相应的属性数据是一种动态联结关系,这也是在ArcGIS系统中能够进行空间分析的关键所在。属性数据的编辑可通过ArcGIS系统的数据库管理系统进行数据结构定义(如数据项名称、类型、长度等)、数据编辑(如插入、删除、拷贝等)、数据查询检索等等,形成可供使用的属性数据库。
(6)投影转换
同一工作区可能利用不同比例、不同投影的图件,要对不同来源、不同时间分辨率和空间分辨率的点、线、面数据进行计算,在拼接图层之前必须对它们进行投影转换,使最终形成的图层均投影到一个坐标系统。
(7)图幅接边
图幅接边的目的是要保持图面数据连续性。工作区有多幅图构成,按上述步骤每幅图分层建立起图层之后,要对各相邻图幅分层进行拼接,图幅的接边精度要满足相应比例尺的国家精度要求。各图层中线图元或面图元拼接后其图元编号要进行改变,在右边图幅中的图元拼接后用左边图幅内的图元编号,下边图幅的图元改用上边图幅的图元编号。其属性数据也要合并为一个,属性数据结构不相同的图元(线或面)不能进行图幅拼接。对于一些图面标注的内容也要做相应的调整。到现在为止,已完成了图形库的建立工作。拼接完成后,仍按图幅分开储存与管理。
(8)数据入库
前面数据处理的目的都是为了使图形进入GIS数据库系统中,以作为其他应用系统的数据基础。图形数据将采用空间数据管理方式、利用系统软件将所有图形及属性统一存放于Oracle之中。
(9)图件输出与图面整饰
在每一图幅数字化完成后,或工作区各图幅分层拼接之后,要对图面标注内容逐一添加到图面上。按有关图例符号标准和用色标准对相应点、线、面图元的线型、符号、颜色进行设置定义。再就图名、图例、比例尺及其图面内容整饰后,输出图件成果。
(10)数据质量控制
检查内容包括数据完整性、逻辑一致性、位置精度、属性精度、接边精度、现势性等是否符合国家标准及有关技术规定。专题图形数据库建设质量控制的方案如下:
建立数据采集标准规范,详细阐述不同要素的采集要求,作为数据采集的根本基准,统一采集认识。
进行数据采集人员培训,熟练使用采集软硬件,掌握采集规范,采集过程中填写详细的图例簿,统一图例簿格式,记录每幅图数据生产过程的基本情况,特别是作业时遇到的问题及处理意见,质量情况等。
数据质量控制采用分级分层管理方式,首先,数据生产操作人员在数据采集过程中严格遵守数据采集规范标准,采集后进行数据的第一次检查;其次,数据库集成人员进行第二次数据质量检查;最后,系统总工随机抽样检查。
检查方式多种多样,这里主要采用以下3种:屏幕视觉检查,打印出图检查,查错软件检查。
⑵ 建立空间数据库的原理、方法和步骤
一、目标任务
1.主要工作任务
《1∶25万内陆干旱区地下水资源评价塔里木盆地地下水勘查空间数据库》是在综合研究已有资料的基础上,补充野外实际工作,建立了58个标准图幅的1∶25万空间数据库。
2.技术要求
采用中国地质大学开发的MAPGIS软件平台,完全依照中国地质调查局提出的各项技术标准,执行中国地质调查局最新修订的《西北地下水资源勘查评价空间数据库工作指南》2.0版及其他相关标准。对选定的58幅1∶25万标准图幅综合水文地质图、地质图、生态环境水文地质图、地貌图、地下水开发利用规划图、地下水水化学类型图、地下水资源分布图、平原区地下水质量分区图、综合水文地质剖面图、重点流域等水位线图等图件进行数字化处理和空间数据库的建立。
参考标准或引用标准:
GB 2260中华人民共和国行政区划代码
GB 9649地质矿产术语分类代码
GB/14157水文地质术语
GB/T 14538-93综合水文地质图图例及色标(1∶200000~1∶500000)
GB/T 14848地下水质量标准
GB/T 13923-92,国土基础信息数据分类与代码(中国标准出版社,1992)
DZ/T 0197-1997数字化地质图图层及属性文件格式(国家行业标准)
西北地下水资源勘查评价空间数据库工作指南
3.提交成果
1)数据库成果(光盘汇交):见表6-1。
2)文档:属性表、图幅基本概况表、工作日志、自检表、互检表、质检组检查表、图面检查表。
表6-1 成果汇交光盘物理存储结构
3)塔里木盆地地下水勘查包括58个标准图幅的水文地质专业图件共7张彩色喷墨全要素图各1张、重点流域等水位线图3张和综合水文地质剖面图1张。
4)《1∶25万内陆干旱区地下水资源评价塔里木盆地地下水勘查空间数据库》建库报告一份。
二、工作方法及流程
(一)项目组织与实施
项目由新疆地质调查院组织,由水文地质工程地质、绘图、计算机等专业技术骨干组成,严格按照规范和技术要求实施。
(二)工作方法
概据任务书的要求,收集、购买已出版的塔里木盆地58幅图的地理信息数字化成果数据,采用中国地质大学开发的MAPGIS6.1软件平台,将此数据在经纬秒格式下进行拼接,按《西北地下水资源勘查评价空间数据库工作指南》标准对地理属性进行了修改。各类专业图件经过专业人员的编图,经审查合格后,采用彩色或灰度扫描,进行图形数字化,做到图元丢失率为0,误差小于0.02mm,其精度均达到设计要求。数据在矢量化过程中以作者原图为主的原则,属性内容以报告和图面内容相结合的方法采集,成果资料中没有的不予反映。
(三)工作流程
本次数据库建设完全按照《西北地下水资源勘查评价空间数据库工作指南》的具体要求,对相关数据资料进行整理。在MAPGIS支持环境下完成图形数据的输入和编辑,利用Access系统下创建的满足《西北地下水资源勘查评价空间数据库工作指南》数据结构要求的数据表,完成外挂属性数据的录入,并实现图层与属性数据的连接。
1.数据信息组成
根据新疆塔里木盆地地下水勘查总体设计书的要求,确定此次工作数据信息的内容为基础地理、基础地质、社会经济信息、水文地质信息(含水文地质条件、水文地质观测、地下水资源等)、环境地质信息、元数据信息,具体的数据信息与内容见表6-2。
表6-2 主要数据类型与数据特征
2.图层划分
新疆塔里木盆地空间数据库的建设,从基础资料图件到成果表达图件,多数内容涉及大量的矢量图形。因此,标准化处理必须确定各种图件的图层划分、图元、属性等方面的内容,以使图形库最大限度地达到共享。图形分层主要考虑到便于图形的操作、管理和计算,同时考虑数据本身的专业数据特点。图层划分详见表6-3 。
表6-3 塔里木盆地地下水勘查空间数据库图层划分
续表
注:#代表含水层编号,含水层未分时,#用“0”替代。
图6-1 工作流程示意图
3.数据准备阶段
作者原图及简单图件用二值或灰度,以300dpi精度扫描,复杂图件用彩色以300DPI精度扫描。所有图件的图式图例参数说明文件放入README文件夹中。
4.数据矢量化阶段
放大70倍进行图件的数字化处理。点线数字化时,要保证其准确性和自然光滑,有坐标的点采用单点展绘的方法直接投影到1∶25万图中,保证了精度。线数字化时,为确保拓扑时弧段不变形,未采用MAPGIS系统提供的线圆滑功能。
5.检查矢量化图件
喷绘数字化图件,对照原图进行自检、互检、抽检,并由水文地质专家进行100%的检查,确保矢量化后的图形数据与原图件一致性和完整性。
6.误差校正
塔里木盆地面积大,横跨4个带。各带图件经检查无误后,生成基于原图高斯北京投影带方式的理论图框,进行误差校正。每标准图幅采集13个控制点,除4个角点外,其余点均匀分布在图幅内。
7.无投影格式下重新拓扑
将检查无误的数据投影到经纬度格式。在经纬度下再进行各带各类图件的拼接,为确保套合精度,重新进行拓扑,录入面属性,再将参与做面的线从整体拓扑图层中弧转线中分离出来,做线属性。
8.喷绘图件
对参与整体拓扑的图层进行拓扑处理、错误检查、修改,然后编辑区颜色。将各图层形成工程文件后,彩喷出图。再由绘图专业人员和水文地质专家对照原图检查,检查出错误进行修改,再出图,再次检查,直至完全无误,最后彩喷成果图件。
9.填写属性卡片
属性卡片的内容以原图和原报告为主要依据。
10.录入属性
在MAPGIS属性库管理模块中将各图层ID号和图元编号做唯一。
11.转换文件格式
将经纬度格式下的属性文件,生成E00文件,转入ARCINFO中,形成最终的ARCINFO格式数据。
工作流程见图6-1。
⑶ 空间数据库建库工作程序
1.空间坐标系统
坐标系统:采用1954北京坐标系,高斯-克吕格投影6度带投影,带号15,中央经线85°30′,单位为m。
高程基准:采用1956黄海高程系。
2.建库工作程序
在实际操作过程中,采用的建库流程参考国家数字地质图建库标准,结合西天山地区1:25万地质图图幅要素的实际情况,创建GeoDatabase数据库,构建各要素集和要素类,数据库结构如图4-3所示。在矢量化过程中,采用以线性地质要素(断层,地质界线,岩性边界等)矢量为起点,以线跟踪,线拷贝为中心,最后以线转面(Feature to Poly-gon)的方法生成各面类地质图层,然后对临时面文件按各地质要素进行分类,导入各图幅的标准地质数据库中,再进行属性数据的录入。
在建库过程中,第一步,对扫描地质图进行几何校正。第二步,在ArcGIS Catalog平台上,按照前文讨论的各地质要素数据集,各地质要素字段创建数据库表结构。在统一的建库标准下建立完整的西天山地区地质图数据结构。每一幅地质图形成一个单独的地质数据库(GeoDatabase),每个库包含相同的数据结构和字段类型,每一个属性表形成一个图层,存放对应的地质几何要素;并在各自的数据库下增加临时线文件、临时面文件,用来保存第一步线形矢量化后未分类的图形数据。
在矢量化过程中,我们首先对断层要素进行矢量,因为断层线性平滑,多数断层是地层岩性的公共边界。断层矢量完成后紧接着对所有岩性边界进行矢量,包括沉积岩地层、侵入岩地层和变质岩地层边界,岩性边界数据存入临时线文件,是一个单独的线要素图层,在矢量时,如果断层恰好是岩性边界的界线或公共边,这时,为保证几何图形拓扑一致性,我们采用 “线跟踪” 或 “线拷贝” 的方法将公共边界的断层线直接拷贝至 “临时线” 图层。凡是作为公共边界的线,我们都采用同样的方法进行矢量,比如 “地质界线”图层与其他面状要素的公共边界等。
完成各岩性界线的矢量后,检查若没有遗漏,利用ArcGIS空间分析模块的 “线转面”(Feature to Polygon)工具,将临时线文件转换为临时面文件,设定闭合容差为10m。转换完成后按照沉积(火山)岩、侵入岩、岩墙进行面状要素的分类,逐一导入各自相对应的单独的图层中。对于脉岩(面)要素、火山机构和矿点(点)要素基本很少与其他图层共用边界,因此,直接对这些要素单独进行矢量便可。最后进行图形的质量检查,包括划分岩性类别检查,几何拓扑检查,检查无误且没有遗漏后,导入标准库中。这样基本完成了一幅扫描地质图各类地质要素的图形矢量工作,下一步,主要参考图例、柱状图和地质图说明书进行属性录入,如流程图4-3所示。最后,检查属性数据的录入完整无误后,便可进行下一图幅的矢量工作。
对于化探和航磁的数据处理可以采用多种方式,本次研究中主要采用克里金插值和主成分分析对化探、航磁数据进行处理,并结合地质矿产图说明书相关内容将化探、航磁数据与致矿有关的信息存入空间数据库中。上述数据的生产均在ArcGIS平台上完成。
3.空间数据库内容
本次资源潜力评价空间数据库包含五个要素数据集,15个要素类以及至少6个栅格数据。
地理要素数据集:使用国家基础地理信息中心的1:25万地形数据库中的水系、政区、居民地和交通要素类四个要素类。
基础地质要素数据集:包括1:25万区域地层、侵入岩、火山岩、变质岩、构造分区、断层、矿产7个要素类。其中,资源潜力评价预测底图数据由地层和侵入体所定义的构造相单元属性通过数据融合直接生成,各要素类中所包含的属性内容及相应的数据类型应和区域成矿模型及资源评价所需要素保持一致,实现模型要求与信息的对称,各属性编码参考 《全国矿产资源潜力评价数据模型数据项下属词规定分册》。
物化探要素数据集:包括1:5万航磁要素类、1:5万地面磁法要素类、1:20万区域化探要素类、1:5万区域化探要素类四个要素类。
物化探栅格数据集:主要存储由物化探要素类通过克里金插值转换而来的栅格数据以及在空间分析过程中产生的栅格数据。
遥感栅格数据集:主要用于存储研究区ETM+卫星数据,是近年来在地质矿产应用特别是填图和蚀变信息提取占据主流地位的遥感数据源。
4.数据库质量控制
空间数据库在数据完整性、逻辑一致性、位置精度、属性精度、接缝精度均要求符合中国地质调查局制定的有关技术规定和标准的要求。
⑷ 空间数据库的建立
空间数据库包括属性库和图形库。建立图形库的基本方法是地图扫描矢量化。首先将地图扫描为栅格数据,通过栅格数据矢量化追踪出点、线;然后进行线拓扑错误检查,纠正拓扑错误;最后将线转换成弧段,建立拓扑关系,形成区文件。地图扫描矢量化具有速度快、精度高、自动化程度高等优点,正在成为 GIS 中最主要的地图数字化方式。为满足 GIS 分析、处理图件的要求,还需对图件进行处理,即通过 MapGIS 里的误差校正功能将所有图件调整到同一位置,便于以后的叠加分析,并通过投影变换将所有图件标准化。详见图 3-33。
利用 MapGIS 属性库管理子模块创建农用地分等属性库,具体包括单元编号、所属镇村、行政代码、面积(公顷)、分等因素指标值、分等指数等单元的基本属性(图 3-34)。
图3-33 MapGIS建立图形数据效果图
图3-34 MapGIS属性库管理界面