导航:首页 > 数据处理 > flink如何实时更新离线数据

flink如何实时更新离线数据

发布时间:2023-08-14 16:26:45

‘壹’ 4.一文搞定:Flink与Kafka之间的精准一次性

在上一篇文章当中,也算是比较详细且通俗的聊了聊Flink是如何通过checkpoint机制来完成数据精准一次性的实现的。并且也在上一章的结尾表示,要在接下来聊一聊Flink与它的铁哥们Kafaka之间,是如何实现数据的精准一次性消费的。
本次的聊法,还是要通过以kafka(source)->Flink,Flink(source)->Kafka来分别展开讨论。

kafka是一个具有数据保存、数据回放能力的消息队列,说白了就是kafka中的每一个数据,都有一个专门的标记作为标识。而在Flink消费kafka传入的数据的时候,source任务就能够将这个偏移量以算子状态的角色进行保存,写入到设定好的检查点中。这样一旦发生故障,Flink中的FlinkKafkaProce连接器就i能够按照自己保存的偏移量,自己去Kafka中重新拉取数据,也正是通过这种方式,就能够确保Kafka到Flink之间的精准一次性。

在上一篇文章当中,已经表明了,如果想要让输出端能够进行精准一次性消费,就需要使用到幂等性或者是事务。而事务中的两阶段提交是所有方案里面最好的实现。

其实Flink到Kafak之间也是采用了这种方式,具体的可以看一下ctrl进到FlinkKafkaProce连接器内部去看一看:

这也就表明了,当数据通过Flink发送给sink端Kafka的时候,是经历了两个阶段的处理的。第一阶段就是Flink向Kafka中插入数据,进入预提交阶段。当JobManager发送的Ckeckpoint保存成功信号过来之后,才会提交事务进行正式的数据发送,也就是让原来不可用的数据可以被使用了。

这个实现过程到目前阶段就很清晰了,它的主体流程无非就是在开启检查点之后,由JobManager向各个阶段的处理逻辑发送有关于检查点的barrier。所有的计算任务接收到之后,就会根据自己当前的状态做一个检查点保存。而当这个barrier来到sink任务的时候,sink就会开启一个事务,然后通过这个事务向外预写数据。直到Jobmanager来告诉它这一次的检查点已经保存完成了,sink就会进行第二次提交,数据也就算是成功写出了。

1.必须要保证检查点被打开了,如果检查点没有打开,那么之前说的一切话都是空谈。因为Flink默认检查点是关着的。
2.在FlinkKafakProcer连接器的构造函数中要传入参数,这个参数就是用来保证状态一致性的。就是在构造函数的最后一个参数输入如下:

3.配置Kafka读取数据的隔离级别
在kafka中有个配置,这个配置用来管理Kafka读取数据的级别。而这个配置默认是能够读取预提交阶段的数据的,所以如果你没改这个配置,那两阶段提交的第一阶段就是白费了。所以需要改一下这个配置,来更换一下隔离级别:

4.事务超时时间
这个配置也很有意思,大家试想一下。如果要进行两阶段提交,就要保证sink端支持事务,Kafka是支持事务的,但是像这个组件对于很多机制都有一个超时时间的概念,也就是说如果时间到了这个界限还没完成工作,那就会默认这个工作失败。Kafka中由这个概念,Flink中同样由这个概念。但是flink默认超时时间是1小时,而Kafka默认是15分钟,这就有可能出现检查点保存东西的时间大于15分钟,假如说是16分钟保存完成然后给sink发送检查点保存陈功可以提交事务的信号,但是这个时候Kafka已经认为事务失败,把之前的数据都扔了。那数据不就是丢失了么。所以说Kafka的超时时间要大于Flink的超时时间才好。

截止到目前为止,基本上把有关于状态维护的一些东西都说完了,有状态后端、有检查点。还通过检查点完成可端到端的数据精准一次性消费。但是想到这我又感觉,如果有学习进度比我差一些的,万一没办法很好的理解怎么办。所以在下一篇文章当中我就聊聊Flink中的“状态”到底是个什么东西,都有什么类型,都怎么去用。

‘贰’ 基于Flink的实时计算平台的构建

一、系统架构

1. 接入层

Canal、Flume、Kafka

针对业务系统数据,Canal监控Binlog日志,发送至kafka;

针对日志数据,由Flume来进行统一收集,并发送至kafka。

消息队列的数据既是离线数仓的原始数据,也是实时计算的原始数据,这样可以保证实时和离线的原始数据是统一的。

2. 计算层

Flink

有了源数据,在 计算层 经过Flink实时计算引擎做一些加工处理,然后落地到存储层中不同存储介质当中。

3. 存储层

HBase、Kafka、ES、Mysql、Hive、Redis

不同的 存储介质 是通过不同的应用场景来选择。

4. 数据应用层

风控、模型、图谱、大屏展示

通过存储层应用于不同的 数据应用 ,数据应用可能是我们的正式产品或者直接的业务系统

二、技术实现

1. 计算引擎

实时计算引擎的功能要求

提供高级 API,支持常见的数据操作比如关联聚合,最好是能支持 SQL

具有状态管理和自动支持久化方案,减少对存储的依赖

可靠的容错机制,低延时,最好能够保证Exactly-once

Flink的优势

Flink的API、容错机制与状态管理都满足实时数仓计算引擎的需求

Flink高吞吐、低延时的特性

端到端的Exactly-once

WaterMark&Event Time的支持

Flink 不仅支持了大量常用的 SQL 语句,还有丰富的数据类型、内置函数以及灵活的自定义函数,基本覆盖了我们的开发场景

2. 存储引擎

根据不同的业务场景,使用最适合的存储引擎:

Kafka主要用于中间数据表的存储

ES主要针对日志数据的存储和分析

HBase、Redis可用于维表存储

Hive用于数据校验

Mysql可以用于指标计算结果的存储

三、数据分层

数据源:目前数据源主要是Binlog,通过Canal监控各个业务系统的Mysql,将binlog发送至kafka。

ODS层:主要将Binlog数据存储至Kafka,这一层不对数据进行任何操作,存储最原始的数据,Binlog 日志在这一层为库级别,即:一个库的变更数据存放在同一个 Kafka Topic 中。

DWD层:主要对数据进行简单的清洗。拆分主题,将库级别的主题拆分为表级别;打平数据,将data数组格式打平。

DWS层:主要根据不同的业务的需求,将该需求所涉及到的表进行join所得。

APP层:根据指标计算需求,对数据进行处理后,存储HBase,为了方便模型查询,主要将表存储为索引表和明细表,直接对数据进行指标计算后,将计算结果存储到HBase。

四、数据监控及校验

1. 数据监控

目前数据的监控的架构是pushgateway + Prometheus + Grafana

数据监控主要是接入Flink的Metric,通过Grafana对Flink系统指标及自定义指标进行图形化界面的展示,对关键指标进行监控报警

2. 数据校验

目前数据的监控的架构是Grafana + Mysql

Grafana用于监控指标的展示及相关阈值数据的报警,Mysql主要用于监控数据的存储

将每个服务的source收到的数据、sink发出的数据,根据表的不同将数据关键字段写入mysql中,通过统计各个阶段各个表中的数据条数,对数据完整性进行监控校验,若出现数据缺时,先查找原因,然后指定时间戳重启服务

五、系统管理

元数据管理

表,字段元数据管理,实时感知元数据的变化,大幅度降低使用数据的成本。

系统配置

对应用启动参数及相关配置参数的管理,对任务进行灵活配置及管理。

血缘管理

主要是梳理实时计算平台中数据依赖关系,以及实时任务的依赖关系,从底层ODS到DWD再到DWS,以及APP层用到哪些数据,将整个链度串联起来。

六、问题及解决方案

1. 数据倾斜

由于要拆分主题,要以table为key对数据进行keyBy,但是由于每个表的数据量相差较大,会出现数据倾斜

解决方案:

加盐,给key加前缀

前缀不能随便加,为了保证同一id的数据在相同的分区中,所以根据id_table进行keyBy

2. 数据重复

任务在进行自动或手动重启时,为了保证数据不丢失,数据会出现重复计算的问题,如果下游只是对数据进行HBase存储的话,由于幂等性,这种重复可以解。但是,如果下游要对数据进行聚合,这样会导致数据被计算多次,影响计算结果的准确性

解决方案:

上游在对数据进行发送时,对kafka procer 进行 exactly once的设置

在对数据统计时进行数据去重

3. 数据延时

由于所处理的数据表的大小不一样,处理大表时,会出现数据延时的问题。

解决方案:

针对大表数据增加并行度

4.数据乱序

由于Flink kafka procer默认是根据hash对数据进行随机分区,kafka consumer在对数据进行消费时,每个分区消费速度不同,这样最终在存储数据时,就会出现乱序即相同的id会出现老数据覆盖新数据的问题

解决方案:

对kafka每个阶段进行自定义分区,将id相同的数据分到同一个分区,保证同一id的数据的有序性

由于整个数据处理过程中可能会出现shuffle,导数数据重新乱序,所以在对数据存储前对数据进行排序

对数据进行排序的关键点时要保证每条数据的唯一性,即要有标记数据先后顺序的字段

5 . 数据唯一标记(很重要)

由于要对数据进行去重或者排序,所以要保证数据的唯一性

解决办法:

使用时间戳不可以,因为数据量很大的情况下,同一时间会处理上百条数据

在最初发出数据的时候,为数据打上标记,使用 partition + offset + idx 的组合来确认数据的唯一性及顺序性

6. 数据可靠性

我们对服务重启或对服务升级时,可能会出现数据的丢失

解决方案:

结合Flink 的checkpoint及savepoint机制保证数据的可靠性

开启Flink的checkpoint机制,服务进行自动重启时,会自动读取上次保存在checkpoint中offset,或者我们指定offset进行数据消费

对服务进行升级时,先将服务的状态保存至savepoint中,重启时指定savepoint进行服务启动,保证数据不丢失

7. 无感升级

由于我们目前数据量比较庞大,且在对服务进行升级时,耗时较长,会影响调用方的使用。

解决办法:

在对服务进行升级时,将数据写入备用库,等数据追上且服务稳定运行后,再将存储库进行切换

阅读全文

与flink如何实时更新离线数据相关的资料

热点内容
轴承工程师产品有哪些 浏览:26
二手老车交易费用有哪些 浏览:562
成都葡萄酒代理多少钱 浏览:812
产品检验叫什么工种 浏览:68
想开美容店做什么产品 浏览:32
产品本质怎么运营 浏览:380
百度地图如何添加酒店信息 浏览:403
数据分析哪些误区 浏览:374
网管和内部信息化哪个部门好 浏览:659
官网旗舰店怎么代理 浏览:439
银行办贷款低于市场价怎么办 浏览:521
表格中有的数据不能被筛选怎么办 浏览:59
门店小程序怎么运用 浏览:960
市场上常见的化肥有哪些 浏览:430
中大市场到佛山物流有哪些 浏览:555
骨髓生育技术是什么 浏览:925
普桑的启停技术是怎么关闭的 浏览:574
槟榔代理一个市多少 浏览:363
成都久贸市场怎么样 浏览:570
太仓市板材市场有哪些木材 浏览:693