① 大数据工作都做什么。我对大数据感兴趣,想从事这方面的工作,但是不知道他具体是要做什么。求解~~
大数据相关工作岗位很多,有大数据分析师、大数据挖掘算法工程师、大数据研发工程师、数据产品经理、大数据可视化工程师、大数据爬虫工程师、大数据运营专员、大数据架构师、大数据专家、大数据总监、大数据研究员、大数据科学家等等。
数据分析师:
工作内容:
a.临时取数分析,比如双11大促活动分析;产品的流量转化情况、产品流程优化分析,等等;
b.报表需求分析--比如企业常见的日报、周报、月报、季报、年报、产品报表、流量转化报表、经营分析报表、KPI报表等等;
c.业务专题分析:
精准营销分析(用户画像分析、营销对象分析、营销策略分析、营销效果分析);
风控分析(策略分析,反欺诈分析,信用状况分析);
市场研究分析(行业分析、竞品分析、市场分析、价格分析、渠道分析、决策分析等等);
工具和技能:
工具: R、Python、SAS、SPSS、Spark、X-Mind、Excel、PPT
技能:需掌握SQL数据库、概率统计、常用的算法模型(分类、聚类、关联、预测等,每一类模型的一两种最典型的算法)、分析报告的撰写、商业的敏感性等等;
数据挖掘工程师:
工作内容:
a.用户基础研究:用户生命周期刻画(进入、成长、成熟、衰退、流失)、用户细分模型、用户价值模型、用户活跃度模型、用户意愿度识别模型、用户偏好识别模型、用户流失预警模型、用户激活模型等
b.个性化推荐算法:基于协同过滤(USERBASE/ITEMBASE)的推荐,基于内容推荐,基于关联规则Apriot算法推荐,基于热门地区、季节、商品、人群的推荐等
c.风控模型:恶意注册模型、异地识别模型、欺诈识别模型、高危会员模型、
电商领域(炒信模型、刷单模型、职业差评师模型、虚假发货模型、反欺诈模型)
金融领域(欺诈评分模型、征信评分模型、催收模型、虚假账单识别模型等)
d.产品知识库:产品聚类分类模型、产品质量评分模型、违禁品识别模型、假货识别模型等
e.文本挖掘、语义识别、图像识别,等等
工具和技能:
工具: R、Python、SAS、SPSS、Spark、Mlib等等
技能:需掌握SQL数据库、概率统计、机器学习算法原理(分类、聚类、关联、预测、神经网络等)、模型评估、模型部署、模型监控;
数据产品经理:
工作内容:
a.大数据平台建设,让获取数据、用数据变得轻而易举;构建完善的指标体系,实现对业务的全流程监控、提高决策效率、降低运营成本、提升营收水平;
b.数据需求分析,形成数据产品,对内提升效率、控制成本,对外增加创收,最终实现数据价值变现;
c.典型的大数据产品:大数据分析平台、个性化推荐系统、精准营销系统、广告系统、征信评分系统(如芝麻评分)、会员数据服务系统(如数据纵横),等等;
工具和技能:
工具: 除了掌握数据分析工具,还需要掌握 像 原型设计工具Auxe、画结构流程的X-Mind、visio、Excel、PPT等
技能:需掌握SQL数据库、产品设计,同时,熟悉常用的数据产品框架
数据研发工程师:
工作内容:
a.大数据采集、日志爬虫、数据上报等数据获取工作
b.大数据清洗、转换、计算、存储、展现等工作
c.大数据应用开发、可视化开发、报表开发等
工具和技能:
工具:hadoop、hbase、hive、kafaka、sqoop、java、python等
技能:需掌握数据库、日志采集方法、分布式计算、实时计算等技术
② 数据清洗是什么数据清洗有哪些方法
随着大数据时代的发展,越来越多的人开始投身于大数据分析行业。当我们进行大数据分析时,我们经常听到熟悉的行业词,如数据分析、数据挖掘、数据可视化等。然而,虽然一个行业词的知名度不如前几个词,但它的重要性相当于前几个词,即数据清洗。
顾名思义,数据清洗是清洗脏数据,是指在数据文件中发现和纠正可识别错误的最后一个程序,包括检查数据一致性、处理无效值和缺失值。哪些数据被称为脏数据?例如,需要从数据仓库中提取一些数据,但由于数据仓库通常是针对某一主题的数据集合,这些数据是从多个业务系统中提取的,因此不可避免地包含不完整的数据。错误的数据非常重复,这些数据被称为脏数据。我们需要借助工具,按照一定的规则清理这些脏数据,以确保后续分析结果的准确性。这个过程是数据清洗。
常用的数据清洗方法主要有以下四种:丢弃、处理和真值转换。让我们来看看这四种常见的数据清洗方法。
1、丢弃部分数据
丢弃,即直接删除有缺失值的行记录或列字段,以减少趋势数据记录对整体数据的影响,从而提高数据的准确性。但这种方法并不适用于任何场景,因为丢失意味着数据特征会减少,以下两个场景不应该使用丢弃的方法:数据集中存在大量数据记录不完整和数据记录缺失值明显的数据分布规则或特征。
2、补全缺失的数据
与丢弃相比,补充是一种更常用的缺失值处理方法,通过某种方法补充缺失的数据,形成完整的数据记录对后续的数据处理。分析和建模非常重要。
3、不处理数据
不处理是指在数据预处理阶段,不处理缺失值的数据记录。这主要取决于后期的数据分析和建模应用。许多模型对缺失值有容忍度或灵活的处理方法,因此在预处理阶段不能进行处理。
4、真值转换法
承认缺失值的存在,并将数据缺失作为数据分布规律的一部分,将变量的实际值和缺失作为输入维度参与后续数据处理和模型计算。然而,变量的实际值可以作为变量值参与模型计算,而缺失值通常不能参与计算,因此需要转换缺失值的真实值。
俗话说,工欲善其事,必先利其器。一个好用的工具对数据清洗工作很有帮助,思迈特软件Smartbi的数据清洗功能就十分优秀。
思迈特软件Smartbi的轻量级ETL功能,可视化流程配置,简单易用,业务人员就可以参与。采用分布式计算架构,单节点支持多线程,可处理大量数据,提高数据处理性能。强大的数据处理功能不仅支持异构数据,还支持内置排序、去重、映射、行列合并、行列转换聚合以及去空值等数据预处理功能。
现在你知道什么是数据清洗吗?数据清洗是数据分析中一个非常重要的环节,不容忽视。Smartbi的这些功能配置,无疑是数据清洗的好帮手。
③ 大数据的就业方向
大数据的择业岗位有:
1、大数据开发方向; 所涉及的职业岗位为:大数据工程师、大数据维护工程师、大数据研发工程师、大数据架构师等;
2、数据挖掘、数据分析和机器学习方向; 所涉及的职业岗位为:大数据分析师、大数据高级工程师、大数据分析师专家、大数据挖掘师、大数据算法师等;
3、大数据运维和云计算方向;对应岗位:大数据运维工程师。
大数据学习内容主要有:
①JavaSE核心技术;
②Hadoop平台核心技术、Hive开发、HBase开发;
③Spark相关技术、Scala基本编程;
④掌握Python基本使用、核心库的使用、Python爬虫、简单数据分析;理解Python机器学习;
⑤大数据项目开发实战,大数据系统管理优化等。
想要系统学习,你可以考察对比一下开设有IT专业的热门学校,好的学校拥有根据当下企业需求自主研发课程的能,南京北大青鸟、中博软件学院、南京课工场等都是不错的选择,建议实地考察对比一下。
祝你学有所成,望采纳。
④ 大数据工程师的工作内容是什么
1、数据采集:
业务系统的埋点代码时刻会产生一些分散的原始日志,可以用Flume监控接收这些分散的日志,实现分散日志的聚合,即采集。
2、数据清洗:
一些字段可能会有异常取值,即脏数据。为了保证数据下游的"数据分析统计"能拿到比较高质量的数据,需要对这些记录进行过滤或者字段数据回填。
一些日志的字段信息可能是多余的,下游不需要使用到这些字段做分析,同时也为了节省存储开销,需要删除这些多余的字段信息。
一些日志的字段信息可能包含用户敏感信息,需要做脱敏处理。如用户姓名只保留姓,名字用'*'字符替换。
3、数据存储:
清洗后的数据可以落地入到数据仓库(Hive),供下游做离线分析。如果下游的"数据分析统计"对实时性要求比较高,则可以把日志记录入到kafka。
4、数据分析统计:
数据分析是数据流的下游,消费来自上游的数据。其实就是从日志记录里头统计出各种各样的报表数据,简单的报表统计可以用sql在kylin或者hive统计,复杂的报表就需要在代码层面用Spark、Storm做统计分析。一些公司好像会有个叫BI的岗位是专门做这一块的。
5、数据可视化:
用数据表格、数据图等直观的形式展示上游"数据分析统计"的数据。一般公司的某些决策会参考这些图表里头的数据。