‘壹’ 什么是大数据,大数据时代有哪些趋势
行业主要上市公司:易华录(300212)、美亚柏科(300188)、海量数据(603138)、同有科技(300302)、海康威视(002415)、依米康(300249)、常山北明(000158)、思特奇(300608)、科创信息(300730)、神州泰岳(300002)、蓝色光标(300058)等
本文核心数据:大数据产业链、产业规模、应用市场结构、竞争格局、发展前景预测等
产业概况
1、定义:大数据产业覆盖范围广
根据中国信通院发布的《大数据白皮书》,大数据产业是以数据及数据所蕴含的信息价值为核心生产要素,通过数据技术、数据产品、数据服务等形式,使数据与信息价值在各行业经济活动中得到充分释放的赋能型产业。不同机构对大数据的定义也有所不同,具体如下:
2、产业链剖析:大数据产业链庞大
大数据产业链覆盖范围广,上游是基础支撑层,主要包括网络设备、计算机设备、存储设备等硬件供应,此外,相关云计算资源管理平台、大数据平台建设也属于产业链上游;
大数据产业中游立足海量数据资源,围绕各类应用和市场需求,提供辅助性的服务,包括数据交易、数据资产管理、数据采集、数据加工分析、数据安全,以及基于数据的IT运维等;
大数据产业下游则是大数据应用市场,随着我国大数据研究技术水平的不断提升,目前,我国大数据已广泛应用于政务、工业、金融、交通、电信和空间地理等行业。
大数据产业上游基础设施具体包括IT设备、电源设备、基础运营商及其他设备,相关代表企业华为、中兴通讯、艾默生、三大运营商等。
中游大数据领域可以细分为数据中心、大数据分析、大数据交易与大数据安全等子行业,相关代表企业包括宝信软件、数据港、久其软件、拓尔思、上海数据交易中心、贵阳大数据交易所与华云数据等。
在下游应用市场,我国大数据应用范围正在快速向各行各业延伸,除发展较早的政务大数据、交通大数据外,在工业、金融、健康医疗等众多领域大数据应用均初见成效。
产业发展历程:十年来大数据产业高速增长,信息智能化程度得到显着提升
我国大数据产业布局相对较早,2011年,工信部就把信息处理技术作为四项关键技术创新工程之一,为大数据产业发展奠定了一定的政策基础。自2014年起,“大数据”首次被写进我国政府工作报告,大数据产业上升至国家战略层面,此后,国家大数据综合试验区逐渐建立起来,相关政策与标准体系不断被完善,到2020年,我国大数据解决方案已经发展成熟,信息社会智能化程度得到显着提升。
产业政策背景:优化升级数字基础设施,鼓励大数据产业发展
2014年,大数据首次写入政府工作报告,大数据逐渐成为各级政府关注的热点,政府数据开放共享、数据流通与交易、利用大数据保障和改善民生等概念深入人心。此后国家相关部门出台了一系列政策,鼓励大数据产业发展。
当前,随着5G、云计算、人工智能等新一代信息技术快速发展,信息技术与传统产业加速融合,数字经济蓬勃发展,数据中心作为各个行业信息系统运行的物理载体,已成为经济社会运行不可或缺的关键基础设施,在数字经济发展中扮演至关重要的角色。数据中心作为大数据产业重要的基础设施,其快速发展极大程度地推动了大数据产业的进步。在2021年3月发布的“十四五”规划中,大数据标准体系的完善成为发展重点。
产业发展现状
1、行业整体情况:大数据产业规模维持高速增长 主要应用于金融和政府领域
——大数据产业规模:2021年超过800亿元
近年来我国大数据行业取得快速发展,赛迪CCID统计,我国大数据市场规模由2019年的619.7亿元增长至2021年的863.1亿元,复合年增长率达到18.0%,大数据市场规模包含了大数据相关硬件、软件、服务市场收入。
——大数据市场结构:产业整体以大数据服务为主,应用领域以金融和政府领域为主
从产业结构来看,目前,我国的大数据产业进入高质量发展阶段,大数据软件和大数据服务的需求开始不断提升,大数据硬件占比有所下降但仍占据主导地位,
CCID统计,2021年我国大数据市场结构中,大数据硬件、大数据软件和大数据服务的市场占比分别为40.5%、25.7%和33.8%。近几年大数据硬件的占比在逐渐下降,大数据软件和大数据服务的占比在逐步提高。未来我国大数据软件和服务市场相比硬件市场将呈现更好的发展态势。
从应用领域来看,大数据分析产品及服务已经从最早的为电信领域客户提供经营分析、为银行领域客户提供风控管理等辅助性经营决策,发展到目前的为金融、电信、政府、互联网、工业、健康医疗、电力等多个行业领域客户提供预测性分析、自主与持续性分析等,以实现企业决策与行动最优化。大数据分析产品及服务应用已经十分广泛,但由于各下游领域业务特点的不同,决定了其对大数据分析产品及服务的具体需求存在一定差异。
CCID统计,2021年我国大数据分析市场下游行业中,金融、政府、电信和互联网位居应用领域前四名,市场占比分别为19.1%、16.5%、15.2%和13.9%,合计超过60%;其他重点应用领域主要包括健康医疗、交通运输、工业、电力等。
2、细分市场一:金融大数据
——金融大数据需求:金融业务规模不断扩大,带动大数据需求提升
从金融领域需求来看,近年来,中国金融领域业务规模不断扩大,其中中国银行业金融机构不断积极拥抱金融科技,推动数字化转型,整体行业规模扩大;保险业和证券业的收入也随着市场经济的发展而提升。
近年来,随着新一代信息技术加速突破应用,以移动金融、互联网金融、智能金融等为代表的金融新业态、新应用、新模式正蓬勃兴起,我国金融业开始步入一个与信息社会和数字经济相对应的数字化新时代,金融数字化转型成为金融行业转型发展的焦点。2019年,人民银行印发《金融科技发展规划(2019-2021年)》,构建起金融科技“四梁八柱”的顶层设计,明确了金融科技发展方向和任务、路径和边界。2022年1月,人民银行再次发布《金融科技发展规划(2022-2025年)》明确提出,从战略、组织、管理、目标、路径以及考评等方面将金融数字化打造成金融机构的“第二发展曲线”。随着金融业务规模不断扩大,加之新一代信息技术的发展,大数据在金融领域的需求将不断提升。
——金融大数据应用场景
过去几年,金融大数据带来了重大的技术创新,为行业提供了便捷、个性化和安全的解决方案。目前,中国金融大数据典型的应用场景包括股票洞察、欺诈检测和预防、风险分析与金融服务领域。
3、细分市场二:政府大数据
——政府大数据需求:互联网政务服务用户规模不断提升
从政府领域需求来看,根据中国互联网络信息中心(CNNIC)发布的第49次《中国互联网络发展状况统计报告》数据显示,互联网政务服务发展展现出了巨大潜能。截至2021年12月,我国互联网政务服务用户规模达9.21亿,较2020年12月增长9.2%,占网民整体的89.2%。“十四五”规划纲要提出要“推进网络强国建设,加快建设数字经济、数字社会、数字政府,以数字化转型整体驱动生产方式、生活方式和治理方式变革”。2021年,我国各省市积极探索、持续推进互联网政务服务建设发展,努力提升公共服务、社会治理等数字化、智能化水平。截至2021年11月,全国已有20多个省(区、市)相继出台数字政府建设的有关规划,为我国互联网政务服务发展注入新的活力。
——政府大数据应用场景
中国政府大数据主要应用于信息共享、政务数据管理、城市网络管理与社会管理几大领域。加强电子政务建设,管理好政府的数据资产,完善政府决策流程,将是未来数年大数据在公共管理领域发展的重要方向。大数据将对政府部门的精细化管理和科学决策发挥重要作用,从而提高政府的服务水平。舆情监测、交通安防、医疗服务等将是公共管理领域重点应用领域。
4、细分市场三:互联网大数据
——互联网大数据需求:互联网行业规模不断提升
在人工智能、云计算、大数据等信息技术和资本力量的助推和国家各项政策的扶持下,2021年,互联网和相关服务业发展态势平稳向好。企业业务收入和营业利润保持较快增长;互联网平台服务和数据业务实现快速发展,信息服务收入较快增长;多省份保持增长态势。2021年我国规模以上互联网和相关服务企业完成业务收入15500亿元,同比增长21.2%。
2022年上半年,我国规模以上互联网和相关服务企业完成互联网业务收入7170亿元,同比增长0.1%。
注:2021年及以前年份,规模以上互联网和相关服务企业,指获得《增值电信业务经营许可证》在中国大陆境内经营全国或区域性增值电信业务、上年度互联网业务收入500万元及以上的企业。2022年,规模以上互联网和相关服务企业口径由互联网和相关服务收入500万元以上调整为2000万元及以上。
——互联网大数据应用场景
在互联网行业,除了社交、B2C业务之外,像在线音视频业务、广告监测、精准营销等等,也是未来潜在应用场景。
产业竞争格局
1、区域竞争:中国大数据企业主要分布在华南和华东沿海地区
根据企查猫数据,截止2022年9月23日,全国大数据产业中“存续”及“在业”的企业多集中分布在华南和华东沿海地区。其中,广东省的大数据企业最多。
2、企业竞争:技术领域创新和经验是关键,融合应用领域行业龙头更能获得青睐
根据大数据产业联盟调研和发布的2022大数据企业投资价值百强榜单来看,榜单共选取了10个细分领域,涉及大数据基础软件、数据治理与分析、数据安全、商业智能、营销大数据5个通用领域,以及政府大数据、金融大数据、工业大数据、健康医疗大数据、空间地理信息大数据5个融合应用领域。
大数据基础软件、数据治理与分析、数据安全、数据可视化等,是所有细分行业应用场景的基础支撑,体现了大数据技术价值和作用。在这些细分领域提供技术解决方案的企业中,技术创新能力较强、在各自的细分领域有较长时间技术积累的厂商是投资机构的关注重点。
政府大数据、金融大数据发展相对成熟,落地实践案例多和品牌知名度高的企业受市场关注程度较高。工业大数据、健康医疗大数据、空间地理信息大数据等市场仍处于待爆发阶段,在各自细分领域建立竞争优势的企业容易获得投资机构的青睐。
注:2022年大数据企业投资价值百强榜是从企业估值/市值、营收状况、创新投入、产品竞争力、细分市场潜力、领导层能力等多个维度进行综合评比,同时结合行业专家打分,评选出2022年度大数据领域最具投资价值的100家企业。
产业发展前景:大数据将继续保持高速增长
大数据作为新一代信息技术的重要标志,对生产制造、流通、分配、消费活动以及经济运行机制、社会生活方式和国家治理能力均产生重要影响。伴随国家快速推动数字经济、数字中国、智慧城市等发展建设,未来大数据行业对经济社会的数字化创新驱动、融合带动作用将进一步增强,应用范围将得到进一步拓宽,大数据市场也将保持持续快速的增长态势。预计2027年我国大数据市场规模将达到2930.9亿元,未来六年复合年增长率为22.6%。
更多本行业研究分析详见前瞻产业研究院《中国大数据产业发展前景与投资战略规划分析报告》。
‘贰’ 国内有哪些大数据公司_中国十大数据公司
“大数据”近几年来可谓蓬勃发展,它不仅是企业趋势,也是一个改败启枝变了人类生活的技术创新。大数据对行业用户的重要性也日益突出。掌握数据资产,进行智能化决策,已成为企业脱颖而出的关键。因此,越来越多的企业开始重视大数据战略布局,并重新定义自己的核心竞争力。
在本文中,整理了在中国境内活跃的大数据领域最具影响力的企业,它们有的是计算机或者互联网领域的巨头,有的则是刚刚创办不久的初创企业。大数据致店一把柒叁二零一泗贰五零,但它们有一个共同点,那就是它们都看到了大数据带来的大机会,并毫不犹豫地挺进了这个领域。
首先来盘点一下那些提供大数据工具察敏的老牌厂商,看看他们是如何利用自身优势地位冲击大数据领域,并将新产品及新方案推广到新一轮技术浪潮当中?
大数据是比云计算还要新兴的一个术语,但是从(表一)中列举的一些公司不难发现,在业内,大数据被科技企业看作是云计算之后的另一个巨大商机,包括IBM、微软、谷歌、亚马逊等一大批知名企业纷纷掘金这一市场;另外,很多初创企业也开始加入到大数据的淘金队伍中,如Cloudera、Clustrix等。但纵观国内大数据服务提供商市场,大数据这一概念,对国内企业来说或许还稍显陌生,在最具影响力的前30家企业中,国内企业几乎还是一片空白,相对来说,国内大数据起步较晚,但依旧有些企业不遗余力的投入大数据这片蓝海,并且发展态势良好,下面就来盘点下大数据领域国内的主力阵营吧!
国内做大数据的公司依旧分为两类:一类是现在已经有获取大数据能力的公司,如网络、腾讯、阿里巴巴等互联网巨头以及华为、浪潮、中兴等国内领军企业,涵盖了数据采集,数据存储,数据分析,数据可视化以及数据安全等领域;另一类则是初创的大数据公司,他们依赖于大数据工具,针对市场需求,为市场带来创新方案并推动技术发展。其中大部分的大数据应用还是需要第三方公司提供服务。
越来越多的应用涉及到大数据,这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以,大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于此,对大数据进行分析的产品有哪些比较倍受青睐呢?
而在这里面,最耀眼的明星当属Hadoop,Hadoop已被公认为是新一代的大数据处理平台,EMC、IBM、Informatica、Microsoft以及Oracle都纷纷投入了Hadoop的怀抱。对于大数据来说,最重要的还是对于数据的分析,从里面寻找有价值的数据帮助企业作出更好的商业决策。下面,我们就来看看以下十大企业级大数据分析利器吧。
随着数据爆炸式的增长,我们正被各种数据包围着。正确利用大数据将给人们带来极大的便利,但与此同时也给传统的数据分析带来了技术的挑战,虽然我们已经进入大数旁敬据时代,但是“大数据”技术还仍处于起步阶段,进一步地开发以完善大数据分析技术仍旧是大数据领域的热点。
在当前的互联网领域,大数据的应用已经十分广泛,尤其以企业为主,企业成为大数据应用的主体。大数据真能改变企业的运作方式吗?答案毋庸置疑是肯定的。随着企业开始利用大数据,我们每天都会看到大数据新的奇妙的应用,帮助人们真正从中获益。大数据的应用已广泛深入我们生活的方方面面,涵盖医疗、交通、金融、教育、体育、零售等各行各业。
‘叁’ 国内真正的大数据分析产品有哪些
1、Tableau
这个号称敏捷BI的扛把子,魔力象限常年位于领导者象限,界面清爽、功能确实很强大,实至名归。将数据拖入相关区域,自动出图,图形展示丰富,交互性较好。图形自定义功能强大,各种图形参数配置、自定义设置可以灵活设置,具备较强的数据处理和计算能力,可视化分析、交互式分析体验良好。确实是一款功能强大、全面的数据可视化分析工具。新版本也集成了很多高级分析功能,分析更强大。但是基于图表、仪表板、故事报告的逻辑,完成一个复杂的业务汇报,大量的图表、仪表板组合很费事。给领导汇报的PPT需要先一个个截图,然后再放到PPT里面。作为一个数据分析工具是合格的,但是在企业级这种应用汇报中有点局限。
2、PowerBI
PowerBI是盖茨大佬推出的工具,我们也兴奋的开始试用,确实完全不同于Tableau的操作逻辑,更符合我们普通数据分析小白的需求,操作和Excel、PPT类似,功能模块划分清晰,上手真的超级快,图形丰富度和灵活性也是很不错。但是说实话,毕竟刚推出,系统BUG很多,可视化分析的功能也比较简单。虽然有很多复杂的数据处理功能,但是那是需要有对Excel函数深入理解应用的基础的,所以要支持复杂的业务分析还需要一定基础。不过版本更新倒是很快,可以等等新版本。
3、Qlik
和Tableau齐名的数据可视化分析工具,QlikView在业界也享有很高的声誉。不过Qlik Seanse产品系列才在大陆市场有比较大的推广和应用。真的是一股清流,界面简洁、流程清晰、操作简单,交互性较好,真的是一款简单易用的BI工具。但是不支持深度的数据分析,图形计算和深度计算功能缺失,不能满足复杂的业务分析需求。
最后将视线聚焦国内,目前搜索排名和市场宣传比较好的也很多,永洪BI、帆软BI、BDP等。不过经过个人感觉整体宣传大于实际。
4、永洪BI
永洪BI功能方面应该是相对比较完善的,也是拖拽出图,有点类似Tableau的逻辑,不过功能与Tableau相比还是差的不是一点半点,但是操作难度居然比Tableau还难。预定义的分析功能比较丰富,图表功能和灵活性较大,但是操作的友好性不足。宣传拥有高级分析的数据挖掘功能,后来发现就集成了开源的几个算法,功能非常简单。而操作过程中大量的弹出框、难以理解含义的配置项,真的让人很晕。一个简单的堆积柱图,就研究了好久,看帮助、看视频才搞定。哎,只感叹功能藏得太深,不想给人用啊。
5、帆软BI
再说号称FBI的帆软BI,帆软报表很多国人都很熟悉,功能确实很不错,但是BI工具就真的一般般了。只能简单出图,配合报表工具使用,能让页面更好看,但是比起其他的可视化分析、BI工具,功能还是比较简单,分析的能力不足,功能还是比较简单。帆软名气确实很大,号称行业第一,但是主要在报表层面,而数据可视化分析方面就比较欠缺了。
6、Tempo
另一款工具,全名叫“Tempo大数据分析平台”,宣传比较少,2017年Gartner报告发布后无意中看到的。是一款BS的工具,申请试用也是费尽了波折啊,永洪是不想让人用,他直接不想卖的节奏。
第一次试用也是一脸懵逼,不知道该点哪?不过抱着破罐子破摔的心态稍微点了几下之后,操作居然越来越流畅。也是拖拽式操作,数据可视化效果比较丰富,支持很多便捷计算,能满足常用的业务分析。最最惊喜的是它还支持可视化报告导出PPT,彻底解决了分析结果输出的问题。深入了解后,才发现他们的核心居然是“数据挖掘”,算法十分丰富,也是拖拽式操作,我一个文科的分析小白,居然跟着指导和说明做出了一个数据预测的挖掘流,简直不要太惊喜。掌握了Tempo的基本操作逻辑后,居然发现他的易用性真的很不错,功能完整性和丰富性也很好。不过没有宣传也是有原因的,系统整体配套的介绍、操作说明的完善性上还有待提升。
‘肆’ 中国有哪些大数据
大数据应用领域极其广泛,涵盖了金融保险、医药医疗、基础电信、交通管理、物流零售、文化娱乐、能源、旅游、农业、工业等。随着政府与公共事业服务意识的不断加强与转变,以及更智慧的执政与管理理念的带动,对于数据的管理与分析需求日益强化,大数据在政府/公共事业领域应用也将日趋广泛。
大数据主要应用的行业有哪些
制造业:利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。
金融业:大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。
汽车行业:利用大数据和物联网技术的无人驾驶汽车,在不远的未来将走入我们的日常生活。
互联网行业:借助于大数据技术分析用户行为,进行商品推荐和针对性广告投放。
餐饮行业:利用大数据实现餐饮20模式,彻底改变传统餐饮经营方式。
电信行业:利用大数据技术实现客户离网分析,及时掌握客户离网倾向,出台客户挽留措施。
能源行业:随着智能电网的发展,电力公司可以掌握海量的用户用电信息,利用大数据技术分析用户用电模式,可以改进电网运行,合理设计电力需求响应系统,确保电网运行安全。
物流行业:利用大数据优化物流网络,提高物流效率,降低物流成本。
城市管理:利用大数据实现智能交通、环保监测、城市规划和智能安防。
生物医学:大数据可以帮助我们实现流行病预测、智慧医疗、健康管理,同时还可以帮助我们解读DNA了解更多的生命奥秘。
公共安全领域:政府利用大数据技术构建强大的国家安全保障体系,公共安全领域的大数据分析应用,反恐维稳与各类案件分析的信息化手段,借助大数据预防犯罪。
个人生活:大数据还可以应用于个人生活,利用与每个人相关联的“个人大数据”,分析个人生活行为轨迹,为其提供更加周到的个性化服务。
‘伍’ 生活中有哪些大数据
有:电商行业,金融行业,医疗行业,农牧渔,生物科技,改善城市,改善安全和执法。
一、电商行业
电商行业是最早利用大数据进行精准营销,它根据客户的消费习惯提前生产资料、物流管理等,有利于精细社会大生产。
二、金融行业
大数据在金融行业应用范围是比较广的,它更多应用于交易,现在很多股权的交易都是利用大数据算法进行,这些算法现在越来越多的考虑了社交媒体和网站新闻来决定在未来几秒内是买出还是卖出。
三、医疗行业
医疗机构无论是病理报告、治愈方案还是药物报告等方面都是数据比较庞大行业,我们可以借助大数据平台收集不通病例和治疗方案,以及病人的基本特征,可以建立针对疾病特点的数据库。
四、农牧渔
这样可以帮助农业降低菜贱伤农的概率,也可以精准预测天气变化,帮助农民做好自然灾害的预防工作,也能减少人员损伤。
五、生物技术
基因技术是人类未来挑战疾病的重要武器,科学家可以借助大数据技术的应用。
六、改善城市
大数据还被应用改善我们日常生活的城市。例如基于城市实时交通信息、利用社交网络和天气数据来优化最新的交通情况。目前很多城市都在进行大数据的分析和试点。
‘陆’ 国内大数据公司有哪些
国内大数据主力阵营:
1.阿里巴巴
阿里巴巴拥有交易数据和信用数据,更多是在搭建数据的流通、收集和分享的底层架构。
2.华为华为云服务
整合了高性能的计算和存储能力,为大数据的挖掘和分析提供专业稳定的IT基础设施平台,近来华为大数据存储实现了统一管理40PB文件系统
3.网络
网络的优势体现在海量的数据、沉淀十多年的用户行为数据、自然语言处理能力和深度学习领域的前沿研究。近来网络正式发布大数据引擎,将在政府、医疗、金融、零售、教育等传统领域率先开展对外合作。
4.浪潮
浪潮互联网大数据采集中心已经采集超过2PB数据,并已建立5大类数据分类处理算法。近日成功发布海量存储系统的最新代表产品AS130000。
5.腾讯
腾讯拥有用户关系数据和基于此产生的社交数据,腾讯的思路主要是用数据改进产品,注重QZONE、微信、电商等产品的后端数据打通。
‘柒’ 大数据应用与哪些行业
大数据应用于各个行业,包括金融、汽车、餐饮、电信、能源、娱乐等在内的社会各行各业都已经融入了大数据的痕迹。
1、制造业:利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。
2、金融业:大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。
3、汽车行业:利用大数据和物联网技术的无人驾驶汽车,在不远的未来将走入我们的日常生活。
4、互联网行业:借助于大数据技术分析用户行为,进行商品推荐和针对性广告投放。
5、餐饮行业:利用大数据实现餐饮O2O模式,彻底改变传统餐饮经营方式。
6、电信行业:利用大数据技术实现客户离网分析,及时掌握客户离网倾向,出台客户挽留措施。
7、能源行业:随着智能电网的发展,电力公司可以掌握海量的用户用电信息,利用大数据技术分析用户用电模式,可以改进电网运行,合理设计电力需求响应系统,确保电网运行安全。
8、物流行业:利用大数据优化物流网络,提高物流效率,降低物流成本。
9、城市管理:利用大数据实现智能交通、环保监测、城市规划和智能安防。
10、生物医学:大数据可以帮助我们实现流行病预测、智慧医疗、健康管理,同时还可以帮助我们解读DNA,了解更多的生命奥秘。
11、公共安全领域:政府利用大数据技术构建强大的国家安全保障体系,公共安全领域的大数据分析应用,反恐维稳与各类案件分析的信息化手段,借助大数据预防犯罪。
12、个人生活:大数据还可以应用于个人生活,利用与每个人相关联的“个人大数据”,分析个人生活行为轨迹,为其提供更加周到的个性化服务。
大数据的价值远不止于此,大数据对各行各业的渗透,是推动社会生产和生活的核心要素。
(7)中国哪些是大数据扩展阅读
七个典型的大数据应用案例
1、梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
2、Tipp24AG针对欧洲博彩业构建的下注和预测平台。该公司用KXEN软件来分析数十亿计的交易以及客户的特性,然后通过预测模型对特定用户进行动态的营销活动。这项举措减少了90%的预测模型构建时间。SAP公司正在试图收购KXEN。
3、沃尔玛的搜索。这家零售业寡头为其网站Walmart.com自行设计了最新的搜索引擎Polaris,利用语义数据进行文本分析、机器学习和同义词挖掘等。根据沃尔玛的说法,语义搜索技术的运用使得在线购物的完成率提升了10%到15%。“对沃尔玛来说,这就意味着数十亿美元的金额。”Laney说。
4、快餐业的视频分析。该公司通过视频分析等候队列的长度,然后自动变化电子菜单显示的内容。如果队列较长,则显示可以快速供给的食物;如果队列较短,则显示那些利润较高但准备时间相对长的食品。
5、Morton牛排店的品牌认知。当一位顾客开玩笑地通过推特向这家位于芝加哥的牛排连锁店订餐送到纽约Newark机场(他将在一天工作之后抵达该处)时,Morton就开始了自己的社交秀。首先,分析推特数据,发现该顾客是本店的常客,也是推特的常用者。根据客户以往的订单,推测出其所乘的航班,然后派出一位身着燕尾服的侍者为客户提供晚餐。
6、PredPolInc.。PredPol公司通过与洛杉矶和圣克鲁斯的警方以及一群研究人员合作,基于地震预测算法的变体和犯罪数据来预测犯罪发生的几率,可以精确到500平方英尺的范围内。在洛杉矶运用该算法的地区,盗窃罪和暴力犯罪分布下降了33%和21%。
7、TescoPLC(特易购)和运营效率。这家超市连锁在其数据仓库中收集了700万部冰箱的数据。通过对这些数据的分析,进行更全面的监控并进行主动的维修以降低整体能耗。