导航:首页 > 数据处理 > 交通数据如何变现

交通数据如何变现

发布时间:2023-08-10 13:12:30

1. 张涵诚:关于数据变现的十种商业模式

进入2016、数据,已经成为每一个行业和各种业务职能领域重要的生产因素和变革力量。数据的积累、合作、整理、挖掘、利用是现代企业所必需的基本素养,没有它,你的企业将无力面对大数据时代的竞争。我们对于海量数据的挖掘和运用,也预示着新一波生产效率增长和消费者个性化需求的到来。今年我们看到,很多做大数据的公司已经从实际的项目中找到了做大数据的价值变现的路径,探索出了正确的大数据变现之路。
但依然有很多的问题困扰着企业的决策者和创业者,笔者结合我们最新的研究实践总结了如下十种商业模式和同行分享。
数据+物体=智能
(未来人工智能是数据变现的最好方式,当前2B的智能买单意愿更强,个人还比较难)

从国内外的互联巨头的投资动向不难看出,传统的盈利的大数据公司开始涉足硬件市场,利用其固有的软件技术整合硬件厂商快速的占据市场的有利位置。硬件是连接线上与线下的重要组成手段。所以笔者以为智能硬件这才是大数据正在的用武之地,才是大数据最终的价值所在!
毫无疑问,数据支持到搜索,购物和社交,这是变现的绝佳方式。
GFBAT(Google, Facebook, Bai, Alibaba, Tencent,总市值几万亿)的数据变现最早的企业
网络加工数据变成有价值的可供搜索的信息,进而产生广告价值,阿里巴巴让商品信息成为购物的入口,供人买卖,生产交易价值。腾讯,建立人和人的关系,产生广告价值,成为社交入口。非常肯定的说这是数据1.0。

数据征信评价机构(通过数据加快贷款、通过数据降低风险)

BAT巨头纷纷进入大数据征信市场,也正是看中了这千亿级的蓝海市场。据平安证券估计:中国征信行业未来市场规模将达千亿元,其中企业征信市场规模有百亿元,个人征信市场规模有千亿元。有着国企背景的中诚征信则更加progressive,给出了未来市场过万亿的预期。
美国征信市场由传统征信机构、商业信息服务机构、创新型的金融科技企业三种力量组成。
传统征信机构以全球最大的个人征信机构Experian、全球第二大征信机构Equifax、征信数据挖掘公司FICO为代表,基于掌握的消费者和支付数 据提供征信服务。
商业信息服务机构Dun & Bradstreet以庞大的全球商业数据库-全世界最大的企业信用数据库知名,基于其全球化的发展战略,主推风险管理服务(贡献营收62.7%)和销售及市场拓展(37.3%),利用征信业务的规模经济获取高毛利率。
创新金融企业Zestfinance则以技术输出为主要手段,利用传统的信贷记录等数据、大量交易信息、法律记录、租赁信息、网购信息等数据(第三方、网络、调研),使用机器学习的大数据分析模型进行信用评估,取得不错的实效,将信贷的成本降低了25%。
数据征信评价机构
2016年度,国内企业征信领域企业数据库涵盖数据量前5名依次为:1.益博睿2.邓白氏3.信用视界4.鹏元征信5.棱镜征信。依托大数据整合手段,可以预见在未来十几年内,中国必将出现几家对市场经济健康运行发挥巨大作用的规模化企业征信机构。
基因大数据指导生命科学

目前华大基因净利润在1亿元左右,不过深圳不少基金经理认为,作为基因测序的龙头,华大基因上市估值可能一步到位,其市值或直接到1000亿左右。华大基因的招股说明书显示,2015年上半年归属于母公司的净利润为7565万元,2014年度,2013年度的净利润分别为2456万元、13588万元。
生命经济的发展才是未来:面向人类最根本需求的经济形态和创新会是最大趋势。实现从后工业时代到生命经济时代的转变,需要大众转变观点、政策扶持以及科研机构的多方推动。未来,以国家基因库作为支点,围绕生命科学发展的产业,会走入从科学研究到产业化的发展之路,最终实现为人类服务的目标。
在未来社会发展上,影响人类社会经济和生命质量上有三个重大的问题。一是出生缺陷,二是代谢性疾病和心脑血管,三是肿瘤。这三个疾病导致人类医疗费用的支出70%到80%,而这三个疾病的防控唯一的办法就是用现代科技和大数据的支撑才能够解决这样的问题。
我们依靠基因科学技术,产生的大数据来引领着未来的大发展,来支撑着小康社会建设,以一个前所未有的高科技来作为支撑和引领我们一定能在某些领域走在世界前沿。
通过大数据分析为投资提供服务在各行各业并不少见,在传统股票领域,常见的数据分析指标有RSI相对强弱指标,KDJ随机指标,MACD指数平滑异同平均线等。这些指标常被用于分析股票走势,以提供给用户做投资参考。
共享经济最大程度释放数据信息价值。专业领域的数据共享者

这类代表性企业包括,滴滴,UBER,Airbnb、小猪,总市值在几千亿规模,未来会有更大的企业加入

我认为共享经济实际上是大数据2.0。这个在今年的数博会,克强总理的发言原文:“ 【只有共享经济数据才能无限放大】此外,总理认为我们还要发展共享经济,因为只有共享,数据才能无限放大,这不仅仅是做加法、乘法,而且共享经济作为新业态假以时日,将为中国经济注入强大力量。同时共享经济也是分享经济,让每个人都有平等创业的机会,每一行都能出状元。在“双创”方面,未来这些企业中将会诞生小巨人。此外,共享经济让人人都能受益。中国的“宽带中国”建设就是要拉近城乡、东西部的数字鸿沟,而提速降费也是拉近数字鸿沟的方式和手段。
为什么这类企业是数据变现排名第二的公司呢,因为这类企业的数据因为共享被无限的放大。第一个是所有权的价值信息到使用权的价值信息,所有权的价值信息可能在网上就一次,CPS,但如果共享就不断的把同一辆车可以坐无限多次。第二个是对于自身的价值到信息对于其他的行业价值,现在是企业间的共享,共享经济来了以后会形成整个行业里面,产业里面的数据共享,也就是企业跟企业之间的数据怎么交换,怎么共享,所以这样在企业之间数据的交换价值也会被无限的放大。比如滴滴一辆车每天都帮滴滴产生收益。第三个是单一的数据价值到多元的数据价值,这就变成了数据*数据的价值。比如说我是银行的数据价值,但银行的数据价值活性很差,银行数据维度比较差,社交数据就比较鲜活,所以单一的数据价值对于银行来讲是有作用的,但是银行和社交的数据加起来,它的数据的流通性及我们叫跨界融合数据的价值数据也会被无限的放大。再比如滴滴的数据可以用来做保险。
专业的数据加工者数据研究 报告(数据支持到咨询研究类型的企业,如汤森路透、万德、尼尔森、艾瑞、易观)

这类企业深入加工数据,针对一些对数据决策依赖比较深入的企业提供服务。金融、电商、新经济领域。
汤森路透得总裁吉姆·史密斯说:大数据对汤森路透非常重要。从某些方面来说,我们已经长期在管理大型复杂的数据了。我们面对的挑战与其他大型科技公司不一样,过去近25年里,我们一直在管理和整合我们所服务的不同行业领域的各类数据。我们投入了大量的资金来整合众多的数据,集成数据库,让客户可以简单地掌握和搜索所需要的数据资料,而不必再花时间了解来源或复杂性。
万德数据服务(Datafeed)这样描述自己:中国市场的精准金融数据服务供应商,为量化投资与各类金融业务系统提供准确、及时、完整的落地数据,内容涵盖:股票、债券、基金、衍生品、指数、宏观行业等各类金融市场数据,助您运筹帷幄,决胜千里
为客户提供标准的结构化数据,支持模块化订阅,同时满足客户个性定制需求,实现合作伙伴式的落地数据服务。
艾瑞用户行为产品是由艾瑞咨询自主研发,基于中国PC终端和移动智能终端的用户行为研究产品。通过深入分析多维度PC及移动网民的行为特征,及竞争对手的数据情况,为互联网、移动互联网、广告公司、广告主及电信等行业客户,将PC及移动互联网需求量化呈现,是真实反映中国互联网及移动互联网市场发展状况的数据产品。
这类企业深度的研究报告+个性化的数据定制+行业领域的专家智慧积累成就了这个行业的客户也成就了自己。
大数据咨询分析加工服务(埃森哲:数据人工加工、数据堂)
当企业第一方数据价值被掏空,企业需要发展外部数据弥补自身数据的不足,需要采集第三方数据开拓新的业务,发展新的客户的时候,企业就提出了数据采购需求,但一般来说这些数据需要爬或者定向采购,当数据源不能满足企业需求的时候就需要数据加工和分析服务。2015年,美国对信息服务的总需求预计超过6,000亿美元。
利用数据分析获得的认识正逐渐成为企业的一大竞争优势。企业利用数据分析结果实施、优化决策。任何拥有大型客户数据库的企业都可能发展成为这一场信息新博弈中的重要势力。过去,数据市场仅仅局限于传统的市场调查与数据服务公司。
专业的数据数据营销者:精准营销DSP+短信、email、私信(暴力广告,获得线索,客单价较高的产品,如地产)

DSP行业产业链上的角色包括广告主、广告代理商、DSP、广告交易平台、DMP、SSP、广告网络、广告联盟、媒体以及受众。
广告主或代理商通过DSP进行投放,DSP帮助广告主或代理商通过搜索引擎、广告网络以及广告联盟进行投放,同时DSP可以接入多个广告交易平台或可以接入多个SSP来获取媒体受众资源,而广告主则通过DSP对广告交易平台中的流量进行基于受众的购买。
2012年是中国DSP发展的元年,经过过去3年多的酝酿,去年出现了大量的DSP服务商和技术提供商。并且在一些巨头的广告交易平台的推出影响下,DSP所能够投放的广告的量迅速增长。2013年更多的广告平台出现、更多的媒体接入这些平台,同时提升了广告供给量、刺激了广告主的兴趣,市场获得非常高速的增长。在市场上RTB的购买方式是主流。另外,移动端的DSP初露端倪,未来极具成长空间。
能够为广告主、代理公司提供全面服务的服务商,有艾维邑动、爱点击、璧合网络、传漾、好耶、互动通、晶赞科技、聚胜万合、派择、派瑞威行、品友互动、随视传媒、泰一指尚、新数网络、亿玛、亿赞普、易传媒、悠易互通等。
这不可能是独角兽,但第一方数据的加工利用绝对是最好的数据变现方式(每个企业都可以发掘自身企业数据的价值指导企业优化)

大数据在全球范围内的市场规模同样巨大,根据IDC 发布最新研究结果,预测到2018 年全球大数据技术和服务市场的2018 年的复合年增长率将达到26.4%,规模达到415 亿美元,是整个IT 市场增幅的6倍。从行业结构来看,大数据应用主要集中在金融、通信、销售和政府领域,在医疗和旅游行业也有应用,但占比相对较低。
短信、email、私信(暴力广告,获得线索,客单价较高的产品,如地产)
数据开放平台(如新浪数据开放平台、网络数据开放平台、腾讯数据开放平台等)

BAT开放平台的特点
一、腾讯的开放是产品层面的开放,核心资源不可能开放
二、网络的开放是技术层面的开放,过度开放,对网络来说是风险
三、阿里的开放是产业链的开放,但生态的封闭
十、大数据交易所,未来一切公司都是数据公司,一切都将数据化,那么每个公司都会有
一个数据合作部门,他们用来使内部数据和外部数据流通,产生价值

因此我本人非常看好这类公司,我认为数据的3.0我认为是数据交易,数据商品化是大数据产业生态走向文明的方式。现在数据都在线下交换,企业和企业之间,或者个人与个人之间进行交换,但这里面没有商品,数据商品出来之后是大数据的3.0,但是这个时间还需要10年左右。不过这样的部门,如在网络很早就有,主要来合作自己不能爬到的数据的价值。这看起来交易所要满足这些人集中交易数据的需求。实现公开的合法的数据买卖。目前这样的交易有如下几个形式
1)数据以在线云的方式提供API接口对外输出;
2)数据定向采购,线下交易;
这种模式永远存在,而且大家基于朋友的信任和很多利益的私密性,愿意私下进行数据交易,不愿意拿到台面上;
3)数据加工处理后在进行交易。
专门有数据加工的企业出现,
3、因此也成为了主要的数据变现方式
数据是生产资料,如同原油,在原油加工厂柴油、汽油、润滑油、化工品、化学品、精细化工品、

2. 如何才能让大数据变现

讨论一个问题。我们都知道数据是当下所有企业的战略资产,而每个企业中都积累,并不断在产生大量的数据,但为何依然很多企业并不认为数据为其带来了价值,原因可能有很多,但都可以归结到没有用好数据,或者数据不是好数据。

1、 什么样的数据才能产生价值?

阿里巴巴曾鸣认为,所有商业都在快速智能化,而数据是智能商业时代最重要的资产,但只有活数据才能创造价值。第一,数据是活的,也就是说数据是在线的,可以随时被使用;第二,数据必须是被活用的,也就是说数据在不断地被处理,产生智能商业决策,同时又产生更多的数据,形成数据回流。只有在线才能真正让数据成为活数据,进而以数据驱动企业运营。

SCRM的定位是面向行业领导者的用户生态数字化运营平台,行业领导者意味着其客户群体为行业第一层级的企业,用户生态数字化运营平台则有两层含义,一是企业全渠道连接用户、持续互动的连接器,二是连接数据,实现数据变现的平台。

2、SCRM是让消费者交互变纵为横

一是对于SCRM的理解。

一直以来,SCRM有诸多解读,对其中“S”所代表的social同样说法不少。车传利认为,SCRM的重点有两层,第一是以结合社交工具、社交手段,而更为重要的是“企业和品牌不能再远离用户,与用户做朋友”。后一层含义被很多厂商、很多产品所忽略,但事实却是当下消费者的消费习惯会不断变化,但企业要直接与用户产生关系的趋势不变的。

对消费者的需求,作为工具的SCRM产品如何帮助企业触达从企业端来看,过去很难连接消费者,了解不到客户的需求,在层层渠道、经销商中需求传递缺失。这种过去的企业与消费者的关系,可以形象的归结为纵向传递,消费者-渠道商-渠道商-……-企业。即便在现在,大量的第三方线上平台出现并聚集消费者,然而用户的真实需求也多被这些三方平台所截流,企业依然触达不到。

SCRM的一个重点特点便是能够打破中间环节,这也为变纵为横提供了可能,让企业能够打破与消费者之间的层层架构,实现企业与渠道商、门店以及最终消费者的直接连接,从而把握真实客户需求,真正做到客户运营。

3、在线让数据活起来

在数据收集方面,企业面临两大问题,一是线上被第三方平台所截流,线下被渠道截流,很难收集到真正的数据;二是,即便收集到,很多数据不是实时的,消费者可能已经过了相应的周期,数据就变成了废数据。

而数据变现最基础的便是依托互动数据识别用户特性,并基于数据进行进一步互动,下一层次的消费挖掘,比如大量消费者留下的客服数据,这是可以深度挖掘的数据,一方面反应产品存在的问题,一方面亦能发掘新需求。

因此,企业要真正挖掘数据财富的前提,便是能真正获取到数据、能获取到真正数据。发源地的产品通过两方面建立这条通路,一是全渠道连接,二是将线下多端上线,让数据可连接,实现数据变现。

全渠道连接整合企业经营相关的所有与消费者交互的渠道。主要包括门店、线下活动等线下渠道,官网、微信微博、APP等自营媒体平台,天猫、京东等电商平台,经销商、服务商等合作伙伴以及广告等6类渠道,实现全渠道连接客户接触点。整合渠道后,依托平台与消费者持续互动,不断汇集实时的消费者数据,进而通过数据挖掘,实现数据应用。

同时,连接数据的重点在于让线下的链条在线化,包括线下渠道、线下商品、员工以及消费者的上线。

客户在线,以消费者几乎必备的微信作为入口,通过线上活动、支付等手段连接门店、连接消费者,将相关消费信息记录下来,回传到系统;

员工在线,门店的店员在线,将与消费者的互动实现线上记录,实现精细化运营;

产品在线,让每一个员工都知道每一个货品的销售情况,判断消费者喜好及货品市场接受度;

渠道在线,实现卖货情况、销售情况等实时掌握,判断门店经营情况。

4、做定制化的SaaS

与很多SaaS服务商不同,发源地服务直接定位在一体化解决方案,而不是产品+服务。或者说SaaS多是主通用产品,结合行业方案或者定制方案,而发源地则是直接瞄准定制方案。

发源地的服务过程主要分为四步:业务流程梳理与战略咨询、发源地SCRM SaaS解决方案、定制化解决方案实施、运营与维护支持。这与SaaS的服务方式普遍不同。

其原因一是因为发源地主要服务集团型、连锁品牌,如vivo、联合利华等,这类大型企业存在太多差异化需求,取决于客户群体的行业特性,发源地定下这种服务理念。

二是发源地认为,一套完整的方案,不是一个通用产品+简单服务便能完成,如果不涉及咨询层面,不与客户一同梳理出企业的流程、脉络,只是客户要一个服务便加一个服务,带给客户的只能是迁就的方案,而不是顺畅、一体化的方案。

当然,并不是说发源地提供的就是纯粹的定制服务,而是依托支持灵活业务拓展的PaaS开放平台,通过功能模块化、可插拔的方式实现。

3. 运营商大数据对外价值变现的十大趋势

作者 | 傅一平

来源 | 与数据同行

最近中国移动提出了DICT战略,显示其在政企市场进一步拓展的雄心,在这个背景下,重新探讨下运营商的大数据变现很有意义。虽然近半年“大数据圈”似乎有点风声鹤唳,但对于合法合规的进行大数据业务的企业来讲没有什么影响。

下面笔者就结合自身实践,给出未来2-3年运营商大数据价值变现的十个趋势判断,仅代表个人看法,希望于你有所启示。

1、行业服务边界不断拓展

依托于运营商潜力巨大的数据资源和政企市场渠道资源,经过多年的市场培育和拓展,当前运营商大数据业务从原来的金融、旅游等行业逐步拓展到政府、旅游、交通、教育、商业、招聘、医疗等各个各业。

运营商ICT业务在推进中,也孕育了不少大数据业务的商机,大数据业务则反过来促进了ICT业务的发展,因为大数据除了业务价值,还有一定的社会品牌效应,两者通过融合可以形成合力。

随着企业数字化转型的加快及产业互联网的崛起,作为未来社会基础设施的大数据,将与云计算、人工智能、物联网、区块链一起,在行业领域开疆扩土,其应用的边界几乎是无限的。

2、进入行业应用的深水区

大数据在行业领域拥有着巨大的潜力并不意味着运营商就能分得多少杯羹。虽然运营商大数据业务当前在金融、旅游等行业已经有所斩获,但这些行业低垂的果实基本要被摘光了。

以金融为例,4-5年前运营商切入的验真,失联触达等业务,当前仍然是运营商大数据变现的主力,但金融行业并未如运营商原先预料的那样,在贷前、贷中、贷后中给予运营商更多的机会,运营商很多变现业务模式的拓展基本是停滞的,起码不够快。

在大量的其他行业领域,运营商往往只能做到蜻蜓点水,而无法聚沙成塔,比如业务的复购率很低。

从定性的角度讲,运营商对于行业的理解还是比较浅的,其大量的行业应用游走在企业的核心生产流程之外,大数据似乎是奢侈品,而不是必需品,因此粘性是不够的。

以金融验真这个业务为例,其附加值并不高,且容易被替代,想想这几年对于金融行业的理解又增加了多少呢?这些都是需要反思的地方。

笔者曾经在智慧交通相关文章中提到:运营商的数据在很多领域其实是很有前途的,但必须深耕,要理解这个行业的业务,通晓这个行业的算法,不停的打磨产品,从而逼近核心。

可以这么说,运营商大数据将很快进入行业应用的深水区,为了顺应这个趋势,运营商需要建立专业化的组织去攻坚克难,挑战很大。

3、与互联网公司的竞争加剧

互联网应该没有把运营商当成主要的大数据竞争对手,但运营商进入这个领域会跟互联网公司形成事实上的竞争,无论是新零售,智慧交通等等,进入者都会感受到互联网巨头的压力。

比如运营商要为大型商超提供数据服务,但互联网公司早就捷足先登,新零售是互联网出的概念,当运营商还在进行自身渠道的艰难转型时,互联网公司线下商业的版图已经规划好了,当然也包括了大数据业务。你到商超谈,人家一开口就提XX通怎么样怎么样。

当然还不仅仅是这些。

无论是互联网公司在To G上自顶向下的推广策略,还有诸如城市大脑单一采购来源的霸气,都在说明巨型互联网公司在这些领域的影响力。

运营商要获得机会,得动用一切可用的资源,发挥自己数据的差异化价值,由点及面去寻找机会。实践证明,管道数据的价值是巨大的,但巨型互联网公司的数据也越来越好,这是不得不面对的现实。

4、从要素驱动向要素+能力驱动转型

运营商当前在大数据变现上的突破只能说摘取了低垂的果实,但这种通过简单数据加工形成的数据产品竞争力是不够的,也是不可持续的。

比如做智慧交通,如果位置精度和覆盖度不够,连速度都测不准,根本做不出高质量的数据产品。

应该来讲,运营商从来就没有现成的、高精度的、可以到用户级别的位置数据,粗精度的原始位置数据未来可能连支撑运营商自己的业务转型都不够,运营商需要充分挖掘现有位置数据的潜力,通过建模等方式把较为精准的位置模型做出来,才能有基本的大数据变现底蕴。

位置精度的提升虽然是一小步,但却是对外大数据变现的一大步。位置准了,运营商对于人们整个线下生活的理解就准了,无论是客流,路网,OD等等都不再话下。

现在运营商依靠数据资源这个要素能走出第一步是不错的,但光靠资源驱动已经不够了,能力必须过来接棒,没有能力加持的运营商大数据变现前景暗淡。

因此,运营商大数据变现未来不再是躺着挣钱,而是要从原始数据的驱动向数据+能力双驱动转型,这个能力包括人才、技术、数据、产品、运营等等,这是不容置疑的。但如果只是空喊着口号不敢探索尝试,则也许连能力提升的机会都没有。

5、持续强化大数据合作的生态

大数据变现从底向上涉及平台、数据、建模、产品、方案、渠道、咨询、运营、安全等一系列的内容,运营商无法一手包办,因此必须建立合作的生态。

从业务的角度看,缺乏渠道合作伙伴、缺乏行业解决方案对于运营商都是很现实的挑战,最大的痛苦莫过于不知道商机在哪里,不知道自己想做的这个数据或产品有没有前途。运营商不可能瞬间将现有的客户经理队伍转为数字化产品的销售队伍,毕竟知识结构的要求不一样。

虽然可以采取MVP的方式推进,但一方面试错的成本摆在那里,运营商也并没有资本为其背书,另一方面时间成本也大了点。现在很多运营商都有合作伙伴招募计划,这是很好的尝试,但符合要求的合作伙伴还是太少了。

从开放的角度看,中国移动的梦网曾经创造过辉煌,但开放这句口号不是随便喊喊的,你得建立一套标准,清晰的告诉别人你有什么能力,然后如何能方便的接入。

比如当我们在互联网大会展示城市实验室产品的时候,发现仍然有那么多的人惊讶于运营商竟然还能做这个,就说明我们在开放这条道上还有很长的路要走。

而当笔者第一次访问阿里云网站的时候,其较好的使用体验给我留下了深刻的印象,随后定期的营销推送起码说明是用心的,又比如笔者第一次使用腾讯云域名申请时,其后腾讯云客服的电话调研也是很及时的。

因此,能否跟更广泛的合作伙伴建立连接,能否建立起开放的平台,能否确保信息的安全,在很大程度上决定了运营商大数据变现的蛋糕能做多大。

6、通过集中化获得溢价能力的趋势将加强

由于历史原因运营商的大数据实际是分省存储和运营的,这跟互联网公司天然的集中统一的数据基因是完全不同的。虽然一些运营商在集中化上做了很多努力,但相对互联网公司,还是有一些差距。

各省本地化做一些产品虽然带来了灵活性,但造成了事实上的重复开发,这种模式在创新阶段其实没什么问题,但最大的问题是各个省能否有足够的资源去保证产品的持续优化,无论从数据的角度,还是从运营的角度看,我们都需要一定的集约化机制来确保高效低成本的运作。

但这还仅仅是一个方面。

另一方面,相较互联网,由于数据的割裂,运营商基于单个省的数据做出的产品溢价能力不高,往往只能服务于特定区域,在很多竞争中会处于劣势,比如当前运营商基于位置数据的应用很多,但为什么上网数据的变现却很少呢?

这个不仅仅是简单的https问题,更是因为客户对于上网数据的诉求基本是全国的,没有地域的概念,这让运营商失去了很多突破的机会。

因此,运营商的大数据在一个省创新后迅速全网复制是一直要坚持的策略,而基于集中化的数据进行创新是提升产品竞争力的一个关键。

7、运营商DICT战略将使得大数据获得更大支持

随着数字经济的发展和行业数字化的进步,传统产业转型升级的需求强劲,运营商和云服务提供商,均在强化云、网、端、边协同,推出“云+网+DICT”智能化解决方案,帮助企业实现更深层次的数字化转型。

运营商的政企2B市场是当前关注的焦点,而云+DICT(DT+CT+ICT+IDC)又是其中的关键,这意味着未来各种资源会逐步会向DICT倾斜,大数据需要抓住这个机会,通过DICT的融合来促进大数据业务的规模化发展,所谓“借势”。

另外,当前三大运营商已经宣布了5G商用,中国移动也发布了了“5G+”计划,其中包括“5G+AICDE”计划,“5G+AICDE”是将5G作为接入方式,与人工智能(AI)、物联网(IoT)、云计算(Cloud Computing)、大数据(Big Data)、边缘计算(Edge Computing)等新兴信息技术深度融合,准备打造以5G为中心的泛智能基础设施。

5G时代人和物、物和物之间的连接产生的数据类型将会更多,5G更密集的基站布点意味着更高的定位精度,5G业务形式更加多样意味着管道中的数据内容会爆发性增加,运营商对于客户行为的刻画能力将进一步加强,每项垂直5G行业应用都将会与大数据有着千丝万缕的关系,这些对于运营大数据的发展是利好。

8、日益趋紧的数据安全要求对于运营商既是挑战也是机遇

运营商虽然拥有海量的数据,但很多省公司并未实质性的开展大数据业务,很多是基于安全的考量。即使是正在开展大数据变现业务的运营商省份,合规合法经营也是其开展大数据业务的底线,运营商对于大数据的业务创新是相对保守的。

事实上,运营商当前能开展的各项大数据新业务,都需要经过内部极其严格的法律、安全多道审核,加上行业、集团、省出台的各种安全管理规范的约束,还有定期的安全检查,都让运营商大数据业务从一出生就经历着内部一轮轮的安全洗礼。

2019年持续发酵的各种信息安全事件让大数据圈似乎如履薄冰,但其打击的还是各种违法经营和黑市交易。事实上,经过新一轮的洗盘,运营商也许会面临较以往更好的商业环境,数据可能会变得更为稀缺,毕竟以前黑市的数据交易会导致良币驱逐劣币的现象,当然这也只是一种猜测。

可以肯定的是,未来国家对于信息安全管控的趋紧会使得大数据业务的创新变得更具挑战性,但合规合法的进行大数据价值挖掘,助力中国经济高质量发展始终是主流,运营商虽然会面临安全上的挑战,但也有更多的机会。

9、运营商大数据对于TO C业务的探索不会停止

互联网公司TO C业务前期是靠钱烧出来的,毕竟消费者是趋利的,拥有高体验的产品和一定基础的用户后,互联网公司才有了珍贵的海量数据,这个时候大数据才有用武之地,反过来赋能业务发展,这是互联网公司应用大数据的本质。

运营商天然就有大数据,但大数据变现的实践还是告诉我们,运营商的数据维度还是不够丰富,比如缺乏消费数据,而巨型的互联网公司通过应用的丰富不断积累着更多维度的数据。

事实上,当前运营商的数据维度拓展基本是停滞不前的,如果不加以改善,在不久的将来,运营商的数据优势会逐步变小,最终会影响到产品的竞争力。

现在运营商建立了很多专业公司,比如中国移动的咪咕,有人会质疑这些公司能否赚钱,姑且不从战略的角度思考这个问题,即使站在大数据的角度看,这些公司的拓展能够让运营商拥有更丰富的数据,这就很有价值。最近中移金科成立了,支付数据对于DT有多重要不用解释吧,因此意义是很深远的。

其实做大数据产品的,哪个没有点TO C的梦想?希望运营商能基于自己的资源优势,结合大数据的差异化特点,能够打造出真正的既卖座又叫好的TO C产品。

10、运营商对于低价值密度的大数据处理能力要求会大幅提升

运营商的DPI数据具有典型的大数据特征,有潜力但价值密度低,但这个数据是运营商除位置数据以外最珍贵的数据,很多人说这个数据在运营商变现中实际没啥应用场景,或者言必称https,那是比较业余的说法。

随着5G时代的到来,对于DPI数据的有效开采挖掘对于运营商大数据变现是核心的基础工作之一。

首先,DPI这个技术原生是为网络优化服务的,比如很多字段对于数据变现没有价值,能否考虑更高性价比的处理手段?这个就需要运营商针对性的进行研究,比如从客户洞察、精准营销和价值变现的角度去高效低成本的采集管道中的数据。

其次,5G海量、低延时、非结构数据的特点,将进一步促进数据存储、处理和分析技术的进步,即使是当前的4G,从采集到应用的时延也是比较高的,很难达到场景式营销的要求,而且保留的周期也非常有限。

最后,5G大数据的价值密度将进一 步降低,对AI的能力要求将更高,即使是针对当前的4G数据,运营商的NLP等能力储备也是不够的,因此要尽快补足短板。

当然,以上十个趋势只是笔者的个人判断,受限于自己的能力和视野,以上谈的肯定有很多不到位的地方,权当笔者抛砖引玉,如果能引发一点思考,那就更好了。

4. 如何用大数据赚钱

问题一:通过大数据如何赚钱 首先要确定自己有的“大数据”是什么数据,大到怎样的量级,其中包含的数据元素有多少;
其次找到自己拥有的数据本身的商业属性,找到需要这些数据的用户,并确定他们对这些数据需要是否刚性,以及调研可以为使用这些数据的用户带来哪些价值或者改善;
最后就是设计一套运营模式,让这些数据变现。包括可以一次性的出售,这基本上不会有太多价值;更好的方式是数据动态更新,提供各种数据之间关联分析和目标组合,分别按照不同用户需要持续提供,也就可以长期的赚钱了。
市场上多数大数据本身并非真正的大数据,只是一部分数据资料而已!

问题二:大数据怎么赚钱 拥有大数据的人,才考虑这个事情哪李。
对大数据进行分析、挖掘,发现一些在小规模数据情况下不能发信的东西,这就是价值,就是钱。

问题三:如何利用大数据赚钱的方法和途径 这个要看具体的情况吧,而且做生意还是要多选择,我在国外看过一个很有特色的无比墙画,画面漂亮,不要开店的,不知道国内有没有,可以找找,以后绝对会取代墙纸

问题四:人人都在讲大数据,怎么利用大数据赚钱 大数据技术应用上可以通过开发各种APP或者系统、网站等借助大数据分析,精准营销,节约成本,挖去潜在用户人群及消费市场,从而实现变现盈利

问题五:怎么用大数据赚钱 可以说得具体点吗

问题六:大数据不再神秘 可谁知道怎么用大数据赚钱 用大数据赚钱,最低层次的,是卖数据――通过交易平台把掌握的数据直接卖出变毁扒现。
更高层次的,对数据进行分析,形成分析报告,提供给有需求的组织,这是数据可视化变现。
再高点层次的,像精准营销这种,通过掌握的海量用户数据进行用户画像,为他们展示精准的广告,收取广告主的钱,这是用数据间接变现。
最高层次的,醉翁之意不在酒,通过数据找准客户所在,最终完成自己产品的销售,或促成项目达成,这是数据商业价值变现。

问题七:怎么李余迟样利用大数据赚钱? 要看新闻更新的是否快,可以做个自己的新闻类门户网站

问题八:怎样通过大数据赚钱 拥有大数据的人,才考虑这个事情。
对大数据进行分析、挖掘,发现一些在小规模数据情况下不能发信的东西,这就是价值,就是钱。

问题九:大数据公司怎么赚钱? 根据个人理解,大数据公司赚钱分为三个等级
1. 直接出售数据: 包括脱敏的各种交易、操作、用户信息;互联网抓取的 *** 息
2. 对数据进行结构化分析后出售: 各种舆情监测,广告投放,传播分析等
3. 根据批量结构化后信息数据进行建模: 用于个性化推荐,走势预测等
中介公司大概能做第一个级别的吧。
当然,后面还有人工智能,只是目前依靠这个赚钱的公司还没看到。

问题十:现有的大数据公司,都是如何赚钱的呢 为各行业和企业做数据分析啊,互联网时代数据是很重要的,依赖有效的数据分析,可以预测到很多方面,并作出适当的运作调整。会有企业因为自己没有能力做这一块,但又需要有这方面,就找他们设计开发咯。

5. 如何实现大数据交易

大数据时代,数据成为数字经济的关键生产要素,以数据为基础,以人工智能为主要驱动力的新型经济形态正在蓬勃发展。大数据产业发展的核心在于数据自由流通,而数据交易就是实现数据有序流通的关键一环。

近日,发源地大数据对我国大数据交易产业进行了深度研究,指明了未来发展路径。

2011年至2014年这四年间,我国大数据处于起步发展阶段,大数据的市场规模增速稳定,每年均保持在20%以上。

2015年,大数据市场规模已达到98.9亿元,同比增长30.7%。

2016年,大数据市场规模增速迎来高潮,达到45%,市场规模继续扩大,超过160亿元。

预计2017年至2020年,大数据的市场增速稳定。

我国主要的大数据交易平台分布在西南、华中和华北地区,均属于国内第一批崛起的大数据交易平台。

从当前的发展来看,中西部发展势头强劲,产业发展进入良性循环,是国内最早规划并实施大数据产业发展的地区。

东部地区则依托经济优势,聚集效应开始显现。就目前而言,以北京、上海、广州为中心向四周辐射,形成以京津冀地区、长江三角洲地区和珠江三角洲地区为集团枢纽的沿海大数据走廊格局,是东部地区大数据交易平台建设的最大特点。

1.大数据交易平台建设进入井喷期。

数据交易平台是数据交易行为的重要载体,可以促进数据资源整合、规范交易行为、降低交易成本、增强数据流动性,成为当前各地促进数据要素流通的主要举措之一。从全国范围来看,2015年前成立并投入运营的有北京大数据交易服务平台、贵阳大数据交易所、长江大数据交易所、东湖大数据交易平台、西咸新区大数据交易所和河北大数据交易中心。2016年新建设的有哈尔滨数据交易中心、江苏大数据交易中心、上海大数据交易中心以及浙江大数据交易中心。据有关数据预测,到2016年年底全国类似的交易平台数量可能达到15到20个[1]。

2.大数据交易变现能力有所提升。

在国家政策的推动鼓励下,数据交易从概念逐步落地,部分省市和相关企业在数据定价、交易标准等方面进行了有益的探索。随着数据交易类型的日益丰富、交易环境的不断优化、交易规模的持续扩大,我国数据变现能力显着提高。据《2016年中国大数据产业白皮书》不完全统计,2015年我国大数据相关交易的市场规模为33.85亿元,预计到2016年国内大数据交易市场规模将达到62.12

亿元,2020年将达到545亿元。

3.大数据交易仍整体处于起步阶段。

从整体发展水平来看,我国大数据交易仍处于起步阶段,突出表现在以下几个方面:一是数据交易主要以单纯的原始数据“粗加工”交易为主,数据预处理、数据模型、数据金融衍生品等的内容的交易尚未大规模展开。二是数据供需不对称使得数据交易难以满足社会有效需求,数据成交率和成交额不高。三是数据开放进程缓慢一定程度上制约了数据交易整体规模,影响数据变现能力。四是数据交易过程中缺乏全国统一的规范体系和必要的法律保障,无法有效破解数据定价、数据确权等难题。

6. “大数据”要这样用才赚钱!

“大数据”要这样用才赚钱!

大数据的生意经其实很简单,就是收入增加,花费减少;就是增加客户,提高客户体验,提高资金回报的杠杆率;大数据应用成熟之后,大数据可以预测商业未来,发现新的商业机会。
一石激起千层浪,国务院发布的2015 第50号文《促进大数据发展行动纲要》刷满了朋友圈,特别是其中提到了大力推动政府部门数据共享,稳步推动公共数据资源开放。2017年底前形成跨部门数据资源共享格局,到2018年实现统一共享平台全覆盖和数据共享及交换。2020年培育10家国际领先的大数据核心龙头企业,500家大数据应用、服务和产品制造企业。
众所周知,大数据商业价值巨大。但是中国大数据的商业价值还没有被充分挖掘。主要的困难在大数据的分散,具有价值的数据大部分集中在在政府内部,垄断国企业,以及互联网巨头之中。分散的数据无法帮助企业拿到具有价值的信息,无法实现大数据的商业变现。政府开放数据,以及大数据交易市场的建立是中国大数据商业价值应用的重中之重。
另外大数据的应用场景和大数据隐私问题,也是大数据商业应用功能的两大问题,不知道数据应用场景,就无法寻找具有价值的数据,就无让数据发挥作用,大数据的应用就会停留在解决数据采集、处理、存储等大数据1.0时代的低级阶段,无法实现大数据商业变现,无法激励企业进一步投资大数据,无法形成数据价值应用的生态循环。大数据隐私问题是所有企业不能回避的问题,到底何种数据可以进行交换,何种数据可以采集和变现,何种数据可以作为商品在市场流通,这些问题既影响个人隐私保护,又影响到企业购买数据产品的积极性,同时也影响了数据企业的发展。
中国大数据企业分为三类,一类是大数据技术公司,为企业提供大数据平台搭建,技术咨询,大数据计算和存储的产品,例如华为、亚信、浪潮等传统IT公司。一类是大数据服务公司,为企业提供基于大数据技术的服务、平台、产品。包括为企业搭建大数据挖掘工具,搜索引擎,分析引擎等大数据处理平台,大数据清洗和挖掘服务例如明略科技,ADMaster,百分点。最后一类是提供数据产品的大数据公司,他们拥有数据,加工生成具有价值的数据,为市场提供标准的数据产品。例如芝麻信用,TalkingData,九次方,星图数据等。
中国大数据市场的数据来源有四种,一种是通过网络爬虫采集的外部数据,大多数提供舆情分析的公司就是通过爬虫技术来进行数据采集的。例如海量数据。一种是提供SaaS服务得到的数据,例如Talkindata。另外一种是靠和运营商或政府合作,通过数据挖掘得到的数据,例如亚信和九次方。最后一种就是自身平台产生的数据(电商、旅游、媒体等互联网企业),包括BAT以及较大的一些互联网公司如360、当当、唯品会、聚美优品、携程、今日头条等。
一、开放数据的价值
开放数据就是政府向社会公布自己所拥有的,并经过脱敏的数据。包括天气数据、GPS数据、金融数据、教育数据、交通数据、能源数据、医疗数据、政府投资数据、农业数据等。这些原始数据本身并没有明显的商业价值,但经过一些公司加工之后,可以产生巨大的商业价值。
开放数据在美国有几千亿美金的市场,包括300亿美金的气象数据,900亿美金的GPS数据,上千亿美金的医疗数据。但政府开放的数据是原始数据,数据自身的商业价值并不大,需要专业的公司对数据进收集,清洗,挖掘,展现,从而形成具有商业价值的数据。在美国有很多公司是依靠加工政府开放数据而实现其商业价值的,例如处理天气数据的Zillow公司,the weather channel 公司,以及处理GPS数据的Garmin公司,它们的总市值已经超过了一百亿美金。
1 、政府开放数据的主要范围
a政府收集和制造的科学数据。例如天气数据,政府资助的医疗研究数据。这些数据都可以作为公共资源进行使用。
b 政府运行的数据,例如政府支出或大型项目运行数据。开放数据一方面可以增加民众对政府的信任,另一个方面可以给一些公司带来商业机遇。
c监管行业的数据。这些数据由企业提供给政府,并且经过政府二次加工。这些宏观数据对于产业规划,企业的投资战略都有很大影响。
2、 中国开放数据之路的挑战
a 国家对数据治理还没有完成。很多数据没有集中管理,还是处于信息孤岛状态,这些都是开放数据需要解决的问题。数据治理投资巨大,时间周期较长,都是巨大的挑战。
b 一些开放数据还不是电子形式。例如医疗数据和教育数据,在一些地区还处于纸质记录状态,没有形成电子档案。这些数据的电子化也是一个较大的挑战。
c 开放数据的脱敏和整合将是一项重大的挑战。特别是国有企业的数据,哪些数据可以公开,哪些数据需要脱敏,如何整合各个地方的数据,这些都是一个挑战
d 大数据服务公司和大数据人才匮乏。由于大数据市场刚刚开始,市场上缺少大数据人才和大数据服务公司,公开的数据短时间可能很难产生商业价值,这会影响政府和企业开放数据的积极性,不利于形成良性的大数据商业市场,会影响开放数据项目的持续发展。
3、有关开放数据一些建议
人类社会即将进入数字时代,开放数据将会是巨大的生产力。政府已经认识到了开放数据的价值,会持续推动政府和国企的数据开放。即使短时间内开放数据的投资看不到商业价值,但其未来经济价值会促使政府坚持开放数据的政策,持续进行投资。就像中国的高速公路,开放数据是另外一条信息高速公路,将数据转化为资产,转化为巨大的社会生产力,帮助企业实现更大的商业价值。
对于数据拥有者的政府,需要在保障公共安全和个人隐私的前提下,完成数据治理和数据整合,逐步向社会开放数据,并提高数据质量,公开面向所有个人和企业,有效利用政府科技资金,让利益相关企业和个人参与到开放数据项目中,鼓励创新,接受外部挑战,利用集体智慧,实现数据最优选择。
对于国有企业,需要在保护自身商业利益的前提下开放数据,帮助各自产业链企业的发展。同时开放数据也可以帮助其自身进行产业规划,进行有效投资,发现市场机会和风险,稳健经营,科学决策。企业可以利用开放数据提高生产效率,减少资源浪费,降低决策失误风险。产业链企业的良性发展,也会推动国企自身发展和进化,提高竞争力,优化企业经营,实现产业共赢。
对于企业家,开放数据将会作为新的资源,帮助企业进行发展,聚焦新的商业机遇,特别是在开放数据影响较大的保健行业,金融行业,能源行业,教育行业。数据服务公司可以利用开放数据,帮助消费者挖掘数据的潜在价值,为企业和政府提供具有价值的商业数据。对于经营中的公司,可以利用开放数据评价商业伙伴和潜在投资,通过提供数据来树立消费者的忠诚度,学会在透明的商业社会中进行经营,寻找公共或私人合作的机会,专注自身产品和客户,为消费者提供更好的产品和服务。
二、万亿的大数据市场
2014年的GDP中消费占比已经超过了50%,标志着中国经济正在向市场经济转型,消费占GDP 50%-70%是中等发达国家向市场经济过渡的一个表现,未来中国经济增长最大的引擎应该来源于消费,特别是个人消费。中国正在经历经济结构调整和城镇化,个人消费需求巨大,社会产品较为丰富,渠道也较为通畅,物流成本正在下降,运输能力正在提高。但是社会消费零售总额增加的还不够快,资源配置不平衡,社会整体消费水平还处于较低的水平。这些问题正在成为中国经济发展的难题,是企业和社会需要解决的问题。
大数据的商业应用将会帮助企业解决这些问题;大数据的有效利用将会提高社会消费水平,将会帮住企业提高效率、洞察客户、增加收入。大数据商业应用未来是万亿级的大市场,大数据是大生意。
大数据时代最重要的特征是人类所有的行为都被数据记录下来,无论是在电商的购买行为,旅游度假,娱乐活动,行为轨迹等,所有的人类社会行为都被各种传感器和互联网记录下来。数据记录了一切,人类社会的行为都变成了数据,用纸质媒体记录人类历史的时代已经过去,历史正在被数据以文字、数据、表格、声音、影像的方式记录了下来。中国的大数据应用主要集中在征信和精准营销,这两个市场的规模加在一起不过两千亿,但是大数据如果同所有企业的商业需求相结合,其产生的化学反应将是巨大的,市场规模将会超过万亿,大数据是个大生意。
网络连接了信息与读者,阿里连接了商品与消费者,腾讯连接了人与人。BAT所有的连接都是建立在数据基础之上的,可以认为大数据连接了一切。数据连接了消费者和商家,数据连接了客户习惯,数据连接客户喜好,数据连接了位置,数据连接了时间和空间,数据连接了历史和现在。连接一切的大数据将会反馈所连接的事物、空间和时间,通过数据记录来反馈物体的移动,客户的消费习惯,个人爱好,行为习惯,活动轨迹,运动规律等。重要的这些反馈数据能知道;你是谁、你在哪里、你喜欢什么、你在干什么、你的消费能力、以及你未来的需求等。所有被反馈的事物都被打上了一个或多个数据标签,这些具有价值的标签经过整理和分析后,将会揭示事物之间的相关性和规律,将会为个人、商家、社会带来巨大价值。
1、大数据帮助制造业规划生产,降低资源浪费
制造业过去面临生产过剩的压力,很多产品包括家电、纺织产品、钢材、水泥、电解铝等都没有按照市场实际需要生产,造成了资源的极大浪费。利用电商数据、移动互联网数据、零售数据,我们可以了解未来产品市场都需求,为客户定制产品。
例如依据用户在电商搜索产品的数据以及物流数据,可以推测出家电产品和纺织产品未来的实际需求量,厂家将依据这些数据来进行生产,避免生产过剩。移动互联网的位置信息可以帮助了解当地人口进出的趋势,避免生产过多的钢材和水泥,
2、移动大数据帮助房地产开发商规划房地产开发
房地产行业在过去为中国GDP贡献了很大力量,未来粗放型的房地产行业将会转向精细化经营,从选地到规划和从设计到建设,都需要参考当地到人口数据和消费者信息,进行科学决策;利用大数据商业应用加快房子销售速度,降低自身负债。
房地产公司可以利用人群的手机位置信息来帮助企业进行开发规划、土地选址、商铺开发等。同时利用人群到用户画像信息帮助房产公司选择合作商户,提升消费人气,最终提高房产价值。
3、移动大数据帮助餐饮零售行业进行选址和顾客导流
餐饮零售行业最关注客户流量,过去开店选址时经常安排人员在十字路口进行人流统计,利用统计的人口流动信息来决定开店地址。进入到移动互联网时代之后,智能手机的位置信息可以帮助餐饮零售行业进行开店选址,企业可以参考客户画像来决定开店的规模,以及产品的类别。
移动互联网端的用户标签和画像数据还可以帮助企业进行一些精准营销,为新开的商户导入客流。特别是在规模较大的购物商厦中,移动App端的位置导航功能,可以指引客户找到新的商户,参加促销活动。市场上已经有成熟的零售餐饮商家和移动互联网大数据公司在开店引流方面进行合作,资金利用的杠杆率超过了5倍,投入产出比较高。
4、传感器数据帮助产品进行故障诊断和预测
家电和汽车正在走向智能化,通过安装传感器,汽车和智能家电可以将运行参数和运行状态传送到厂家的云平台,厂家可以了解其产品的运行状态,零部件的老化程度,帮助厂家及时更换故障器件,延长产品使用寿命,提高安全系数。汽车行业和智能家电在物联网领域将会产生巨大的市场,云计算和大数据处理平台将起到关键的作用。
中国汽车市场的销售规模超过万亿,家电市场也有一万多亿。车联网和智能家电涉及的大数据应用市场也是巨大的,按照大数据商业变现高杠杆率的特点,其市场规模至少应该在百亿左右。
5、利用移动互联网位置信息进行精准营销
O2O已经成为了一个重要的商业模式,很多互联网企业和传统企业都在寻找O2O的应用场景,订餐、教育、家政、汽车美容等都成为O2O的应用典范。移动互联网数据具有LBS和实时特点,可以帮助企业及时连接客户,依据客户需求进行精准营销。
大型购物中心一般都设有电影院,经常存在某些电影在开场前30分钟,大量电影票还没有出售的情况。借助于手机App推送广告功能,电影院在电影放映前30分钟,可以将电影票以2折价格推送给正在周围就餐的客户。依据客户画像信息,电影票将推送给喜爱看电影的顾客,增加电影销售额。企业可以利用手机App进行广告推送,做到千人千面,依据客户喜好来进行广告推送。这种精准广告推送具有成本低、转化率高的特点,在餐饮、服装、美容、零售等行业取得了良好的应用效果。如果基于位置信息的精准广告推送被大规模的商业应用,将会促进商品流转,大幅度提高社会消费总额,帮助传统企业实现互联网+的战略。
6、电商大数据将会帮助企业优化资源配置
电商是最早利用大数据进行精准营销的行业,电商网站内推荐引擎将会依据客户的购买行为,进行关联产品的推荐。除了精准营销,电商还可以依据客户消费习惯来提前为客户备货,并利用便利店作为货物中转点,在客户下单后的短时间内,将货物送上门,提高客户体验。电商还可以利用其交易数据和现金流数据,为其生态圈内的商户提供小额贷款,也可以将此数据提供给银行,为中小企业信贷提供支持。
电商的数据量足够大,数据较为集中,数据种类较多,其商业应用具有较大的想象空间。包括预测流行趋势,消费趋势、地域消费特点、客户消费习惯、消费行为的相关度、消费热点等。依托大数据分析,电商可帮助企业进行产品设计、库存管理、计划生产、资源配置等,有利于精细化大生产,提高生产效率,优化资源配置。
7、移动大数据助力交通运输规划和管理
交通大数据应用主要在两个方面,一方面可以利用大数据传感器的数据了解车辆通行密度,合理进行道路规划。另一方面可以利用大数据分析来实现交通信号灯智能切换,提高已有线路运输能力。
在美国,政府依据某一路段的交通事故信息来增设信号灯,降低了50%以上的交通事故率。大数据可以帮助机场安排航班起降,提高管理效率;航空公司可以利用大数据提高上座率,降低运行成本;铁路公司可以利用大数据安排客运和货运列车,降低运营成本。
8、大数据帮助金融行业进行价值变现
大数据在金融行业应用范围较广,典型的案例有花旗银行利用IBM沃森电脑为财富管理客户推荐产品,美国银行利用客户点击数据集为客户提供特色服务。招商银行(600036,股吧)利用客户刷卡、存取款、电子银行转帐、微信评论等行为数据进行分析,每周给客户发送针对性广告信息。
中国目前金融行业大数据价值变主要在用户体验提升和大数据营销两个方面,其中招商银行信用卡中心和平安银行(000001,股吧)走到了金融行业的前面。
大数据在很多行业都有广泛的应用场景,例如在医疗行业,农林牧渔、能源行业、物流行业等,大数据将会是电商之后的另外一个巨大市场,结合了所有行业的商业需求之后,大数据产业的市场规模将会是个万亿级别。大数据不是电力但是比电力更能提供动力,大数据不是石油,但是比石油更能驱动企业发展。大数据就是资产,能够帮助企业进行价值变现。大数据的生意经其实很简单,就是收入增加,花费减少;就是增加客户,提高客户体验,提高资金回报的杠杆率;大数据应用成熟之后,大数据可以预测商业未来,发现新的商业机会。

7. 高德,百度地图免费用,靠什么盈利

首先要了解一下:高德地图现在属于阿里巴巴的,2014年阿里巴巴集团宣布以11亿美元全资收购高德公司,高德成为阿里的子公司。而网络地图属于网络公司的。

移动互联网的发展,网络地图通过让用户免费使用手机导航,彻底打掉了高德地图的营收来源,致使高德一度陷入发展困境,还好有阿里巴巴收购并入阿里整体战略体系。最新消息,网络将网络地图并入 AI 体系,剥离商业化,也开始专注于地图业务自身。

这两家公司现在都属于互联网公司,典型的互联网盈利模式: 羊毛出在狗身上,猪来买单! 也就是说这两家公司面向C端客户不收费,通过向B端收费的模式来实现盈利。

羊毛处在狗身上,让猪付钱?核心服务免费是互联网企业的普遍模式,之所以能够做到免费,有两个法宝:法宝一:因为有海量用户,可以通过广告获得收入;法宝二:互联网缩短了产品和用户的距离,削减了中间环节的成本。但是免费很容易问题是靠什么来收费来盈利,其中的秘诀就在于价值链再造,改变原有成本结构和收入方式,使“羊毛出在狗身上,猪来买单”。

而对于阿里的高德地图和网络公司的网络地图,他们具体的盈利模式有相同之处也有各自的特色和差异。主要的盈利模式有以下几点:

1、对于与地图相关商家的增值服务

高德地图通过实时交通路况、在线导航和第三方生活服务资源整合等增值服务,致力于打造以位置为纽带整合诸多第三方信息及商务服务, 占领更多的智能终端,将各类生活服务、电子商务融合其中,最终一站式解决用户在移动生活中的种种需求,发展出海量用户。借助庞大的用户规模与活跃的客户群吸引商家,形成资金回流,其中主要有以下三种方式:

(1)为本地生活服务商家提供基于位置服务,获取服务费用。 高德公司提供数据以按期收取服务费或授权费并且根据订单的完成数量收取一定利润分成,以获得稳定现金流。例如:高德在地图版块也增添了“打车”业务,与滴滴、曹操等打车业务同时合作,获得服务费用及分成。此外还有酒店、餐饮等,同时被阿里巴巴收购之后,高德地图作为O2O业务场景重要的流量入口。

(2)通过搜索项目获得广告费用 。这一点是网络公司首创的商业模式,高德地图效仿网络搜索引擎的商业模式,采用 关键词搜索竞价排名 的方式,使竞价高的商家获得更多关注并收取费用。另外,高德地图在手机某些项目中划出一部分作为广告区域,由商家竞价获得投放权以获得服务费。最后,高德地图建立大数据库对搜索数据进行深度挖掘,为商家进行广告定点投放、精准市场营销提供数据支持,获得相应咨询费。

(3)面向地图标示点商家的增值服务。 在海量用户基数下为商家提供不同层次的特殊标示服务,打开某地区地图时,该商家将会有突出的展示,依据地图展示层次收取相应费用,将为商家获得更多关注。

2、手机预装软件和

公司与手机终端厂商合作,为其提供手机预装导航数据和软件。为了使手机消费者使用更便利,手机厂商会有选择的预装部分优秀的软件,于是就必然要向软件提供商支付一定的授权费用。

3、流量变现和app下载流量分发

高德地图上亿的用户量级,按照互联网的流量变现实现盈利模式。高德将会与电信运营商展开流量经营方面的合作,包括定向流量和流量奖励,通过获得流量费用分成形成利润。同时高德地图海量的用户也可以为其他app下载提供流量分发功能来实现盈利。

4、互联网位置服务

高德地图将处理好的测绘数据或基于位置的定位导航技术提供给其他与位置相结合的企业。比如大家所熟知的高德与苹果中国地图的合作,以及此前高德与新浪、阿里巴巴、腾讯、京东在基础地图方面的合作,向赶集网、搜房网等 12 万家网站和第三方开发者提供地图 API 服务。同时获取更多 GPS 信息反馈,完善基础地图数据。

说完了高德地图,我们再说一下网络地图的盈利模式,除了上述的高德地图的盈利外,网络地图需要重点说一下他的竞价排名模式,同网络的搜索引擎一样,网络地图将各种餐饮、住宿、打车等都接入到了网络地图中,当然这其中也包括各种医院和药店。盈利模式当然就是竞价排名模式。

另外站在未来的角度看,车联网的发展车联网做为未来的一个风口,有上万亿的市场,而导航、地图等服务,需要这些地图服务商来提供服务,而车企肯定是需要付费的。

在长期布局地图O2O未果之后,网络选择了撤销了一整个事业部,保守持有大量用户,从而继续发力地图O2O。而高德则不同,高德在放弃O2O策略后,以壮士断腕的决心完成了一次对业务的重组,全面进攻LBS位置服务。

两者的主要区别在于战略思维的不同。网络的地图O2O的定位是主要解决信息不对称的问题,通过覆盖率来为用户提供位置搜索服务。而高德主要想解决的是出行和公共服务,希望能够让整个交通得到有效改善。

由于战略思维出发点的不同,所以导致网络和高德现在的发展完全南辕北辙。虽然两者构想的蓝图都是好的,但是究竟哪一种更能够适应市场需求仍然还是未知数。

废话不多说,直接上干货!

作为高德地图或网络地图之流,对C端用户都是免费使用,而且用户体验来讲是一直在提升的状态,那么对C端用户免费的地图类产品到底是如何盈利的呢?

互联网是讲究流量,只要有用户,有流量,那就存在变现手段。

1. 与 汽车 厂家合作

车企目前都在发展自己的智能设备,于是会与地图类公司合作,既然合作了,肯定要支付一定费用的。

2.厂家、商家入驻费用

之前没有多少B端用户的时候,地图类产品都会先让商家免费入驻,充实自己的数据量。而随着数据量越来越大,地图类企业的名气越来越高,新进入的商家入驻可能就需要交纳一定费用了。当然,大部分目前还是免费的。

3. 对B端用户提供开放平台

拿高德举例,高德开放平台提供安卓、ios的SDK,也提供API接口。在搜索一定量的时候,是免费的, 一旦B端用户搜索量非常大的情况下,就需要签订协议做合作收费了。

这么说大家可能会感觉模糊,继续举个例子。

假设有家公司是做O2O的,因为连接线上线下,势必要利用到定位。在初创阶段,自己肯定没有这么的地图数据,而且开发技术也没时间和精力去搞这些。那就直接用高德或者网络地图的接口好了。O2O公司省去了时间成本,技术成本,而高德或者网络因为提供了对应的服务,那势必要收费吧。而O2O公司的用户,因为能够精准定位,体验提高,自然满意度也很高,那基本就到了三赢的状态。

4.投资者青睐

依旧以高德为例子,被阿里收购后,高德搞得越发有声有色起来。同时,他还能为阿里旗下其他产品提供入口,做到引流,大家一起用力,到达协同效应,相互有好处。投资者开心,继续投资!平台用户量增加,流量增长,平台开心!用户用的爽,用户也很开心!

5. 广告费用

这个就不用解释了吧!

如果喜欢纳兰写的内容,请收藏或关注!

地图厂商最 初盈利模式是与车厂合作 ,依赖在车端预装导航地图,按照预装车的数量,从 汽车 厂商那里收取费用,实现赚钱盈利 。这种模式曾经支撑了高德十几亿的市值。

互联网时代,尤其是 移动互联网时代初期 ,智能机的兴起使得手机地图成为移动端APP标配,地图从此进入个人用户的视野。但此时的 手机地图的产品完全是赔本赚吆喝。 手机导航业务以其快速便捷的更新能力和低廉的价格,开始对 汽车 预装电子导航业务形成冲击。随着竞争的白热化, 手机导航地图免费彻底冲击了高德的生命线,最终迫不得已卖身阿里,至此,地图ToB盈利的时代结束,进入了ToC为主的时代。

ToC的互联网时代,地图该如何盈利,地图厂商门都做了积极的 探索 。比如网络地图在O2O领域的 探索 ,尝试以周边模式为用户推荐吃、住、行等服务,引入商家POI详情和点评数据,引入酒店预订服务,引入出行打车服务等,但是由于线下资源引入线上成本过高,各个线下领域寡头林立,进入门槛巨大,各种尝试均不理想。 在移动互联网时代,地图产品只能做到有营收,但远远谈不上盈利 。

最后,不管是网络地图也好,高德地图也罢,都选择了深耕技术,优化产品,作为产品矩阵的基础服务为其他产品倒流。

在人工智能时代,无人驾驶的蓬勃发展,让地图产业又一次站在了时代的风口。高精地图作为无人驾驶不可或缺的基础服务,成为创业公司和无人驾驶企业争相抢占的新高地。

时代轮回, 地图在经历了ToC移动出行市场需求巨大,盈利难求的窘境之后,又重新回到了ToB的对接车厂寻求突破的新的发展阶段。

在互联网领域有句话很现实,用户就等于流量,流量就等于金钱。所以,无论是网络,还是高德,只要有人用,他们自然有办法让用户使用的流量变现。主要方式有以下几种:

与车厂合作:其实对于这些地图公司而言,他们在最开始的收益来源就是与车厂合作。在车上安装车载导航,一般选择的都是网络或者谷歌。虽然说使用是免费使用,但是车载导航的安装还是需要收取费用的。所以,随着 汽车 行业的发展这成为了他们盈利的一种方式。

跟商家合作:不知道题主有没有感觉,原先在使用高德或者网络地图的时候,地图上很少显示周围的信息,比如说道路左侧有什么商场、道路右侧有什么饭店等等,但是现在都有。这也是他们盈利的一种方式,与商家合作。在地图上显示商家信息,替他们吸引客流量,收取费用。

最后就是互联网行业必不可少的广告费,无论是实体店广告、还是虚拟产品的广告,个人感觉在网络或者高德地图上随处可见。这些广告可不是免费加上的,因为有庞大的用户群体,所以自然而然就能吸引到企业来谈合作~

除此之外,现在我们在地图软件上还能看到很多打车入口、外卖入口、购票入口。如果选择在软件上购买的话,他们也可以收取提成。这种盈利方式这两年才开始,但是随着网络的发展以后会更加常见。

网络、高德地图目前盈利主要来自四大块:

一是收取地图使用费,这里收取的使用费不是针对普通用户,主要是各大 汽车 厂商,因为现在很多车都配备了车载导航,使用的主要就是高德、网络这些地图软件,通过对厂商收取软件预装费用,来获取收益;

二是广告费,因为对用户免费开放,而地图导航这些作为硬需求,很多人都会在手机上安装地图软件,这样有了庞大的用户群体,就可以通过推送广告等方式赚取广告费;

三是接入线下商家,我们打开高德或者网络地图,可以发现除了显示咱们出行的线路,还会显示很多商家店铺的具体位置,如果你有家商铺需要在地图上面显示来增加客户流量,就需要支付给一部分费用给高德、网络,从而成为他们另一个重要的盈利点;

四是跨界合作,给其他服务商提供入口,这里主要包括的是出行和配送领域,出行这块各类打车平台、共享单车平台等平台接入高德、网络地图,是需要支付相关费用的,另外还有配送领域的外卖、快递、跑腿等行业也会选择和他们合作,使用它们的服务从而支付费用。

互联网时代,流量、大数据就是财富,只要有了稳定庞大的用户群,即使免费下载使用,也能在后期通过其他方式进行流量变现

其实作为一款工具级的APP,实际上想真正盈利是很难的。地图领域的老大老二的高德地图和网络地图,虽然我不了解其实际运营状况,但我能确定的是凭地图本身是不可能盈利的。首先,面对普通用户是免费的,这类用户占据了90%,很多车都直接用手机端地图。然后地图还有一批企业级的用户,实际上目前也是免费的,很多内置高德网络的app实际上不用付费的,只有到达一定规模才需要向地图商付费,类似滴滴、美团这些大的平台APP。

但这些收入我认为不足以支撑地图这块儿的投入,地图并不像我们想象的那么简单,谁都做的好,是有很深的技术含量的,而且运营一个上亿用户的地图平台,投入本身就不小。所以地图公司市值本来也不便宜,阿里买高德花了20多亿美元,已经倒下的诺基亚的here地图也卖了20多亿美元,网络这些年在地图砸的钱也不在少数。

现在我来回答地图靠什么盈利,一定是靠互联网的生态来盈利的。地图是什么,是巨大的用户流量入口,互联网经济的本质是什么?就是用户。高德地图背靠阿里,网络地图背靠网络,腾讯也在做腾讯地图。为什么BAT如此重视地图,地图是互联网生态非常重要的一个板块,因为其掌控了用户的出行以及位置数据,这些数据是非常有价值的,LBS可以为BAT其他的商业形态提供精准度数据支撑和流量导入。地图可以不盈利,但是其他生态伙伴盈利了,这才是互联网思维。就如同一家公司,盈利的部门是市场部,那人力资源部财务部就没有创造价值吗。明显不是,互联网生态是一个整体,只要整体盈利,不用关心某一个部分是否盈利,关心的是它是否贡献了应有的价值。

只要有流量,不怕没有钱。在移动互联网时代,流量最重要。

变现的渠道很多:

1 商户入驻

商户入驻虽然不花钱,但是想要得到优先推荐就得花钱了,衣食住行是连在一起的,搞定了行,自然也就关联把衣食住搞定了,餐饮、商场、 娱乐 、住宿等等都会连接在一起。

2 关联

比方说其他软件会关联到地图,这些地图就会收费,如大众点评中商户的位置等等。

3 引流

作为一个流量入口,可以积极为集团的其他业务提供流量引流服务。

4 广告

搜索的时候会有先后之分,这时候就得花钱了。

5 增值服务

比方说提供某些特殊的标识等

6 数据

出行数据本身即是非常值钱了,代表了用户的轨迹

以前的车载凯立德导航买版权是盈利的。后来随着移动终端的发展,免费成为趋势。凯立德慢慢淡出视野。 现在是高德,网络在抢占市场。

据了解网络有部分地图是用高德的数据。这种大企业肯定也肯定是互持股权的,加上资本的撮合。他们合作也很正常,现在是抢流量,抢我用户。

有流量,用户就有资本投入。受到资本的青睐就不怕没钱。公司估值高大把资金来源。。。。真靠那点广告,流量费早就饿死了

8. 运营商大数据变现需要新思维

运营商大数据变现需要新思维
电信行业近年来受OTT、管道化、资费调整等因素的影响,受到的冲击很大,传统业务利润下滑趋势明显。未来要寻求新的增长点,一定是从数据资产的角度出发。运营商守着数据的金矿,如何从里面挖掘出一桶桶货真价实的黄金,这是未来发展的重要方向。
从能力角度分析,电信行业属于整体IT实力比较强的行业,也最早开始挖掘、发现数据的价值。经过15到20年的发展,特别是以经营分析为核心的数据平台的发展,运营商内部的能力建设已经趋于成熟,数据质量、数据治理、数据标准,这些关乎资产自身质量的工作,基本上已经做得比较成熟。运营商有资本沉下心来考虑,到底利用数据来做什么。
目前运营商有三种数据可以形成变现。第一种是业务交易数据、流程性数据、交互式数据。从变现形式来看,第一个层面,就是能力平台,比如位置平台、信用平台,这些都是运营商基于自己的数据做的一些能力组件。像银行在用位置平台的时候,可以用来选址,可以看用户的流动;交通部门可以看到用户乘坐汽车、地铁的情况。这都是能力平台的变现。
第二种是分析能力的变现,比如行业的分析报告,运营商基于自身的数据可以形成银行业、房地产业、零售业的报告等。另外,运营商还可以做出一些针对性的报告,比如某银行的市场竞争分析报告等。
第三种是合作运营。运营商一直想做的其实是运营的变现,运营商利用海量的数据,为第三方用户提供定制化运营的服务,收入按一定比例进行分成。这种是相当于合作运营的方式。
大数据要有专门的部门去运营,必须打破信息孤岛、各自为政的组织架构,这在电信行业逐渐达成共识。以中国移动为例,中国移动已经考虑在省级公司建立大数据中心,大数据中心是省级公司的二级部门,集团也有类似的考量。这样的组织一旦确立,这个部门的职责,主要是做大数据的分析和运营。它的平台一级由原来的IT部门,比如业务支撑系统来承建,上层数据价值的释放、挖掘,以及对外怎样去变现,全部交由大数据中心这个新的部门来做。其KPI考核已经不再是用户新增数、用户保有量、用户收入ARPU等。其背负的KPI就是数据到底变成了多少钱。这样的KPI考核,就会推动这个部门每天都去考虑这些数据怎么变现,这将大大推动运营商大数据向其他行业的拓展。
大数据运营需要行之有效的商务模式,而目前无论是运营商,还是与之合作的企业、政府相关部门,都在进行尝试。姜欣表示,数据变现究竟是以包月的形式进行结算、以计件的形式进行结算,还是以联合运营的方式进行结算,目前运营商和第三方行业都在摸索的过程中,需要经过时间的沉淀,才能形成合适的方式。可能是一种,也可能是几种方式的组合。但不管是面向大客户、政府还是个人,这三方面如果都有市场,都得到了认可,也形成了固定的商业模式,那么未来运营商在数据资产变现上一定能够达到更好的效果。

阅读全文

与交通数据如何变现相关的资料

热点内容
股票交易用哪个平台会好一点 浏览:286
按摩店心灵探索是什么程序 浏览:597
不懂技术的是怎么成功的 浏览:689
花生的产品有哪些 浏览:977
股票交易如何选价格 浏览:996
如何给产品标签 浏览:439
四川南充有哪些水果批发市场 浏览:375
从市场买回来海带怎么清洗 浏览:394
程序员一般精通多少门 浏览:930
技术转做销售怎么样 浏览:376
为什么警察会抓捕犯罪人信息 浏览:560
otg数据线用什么手机 浏览:188
重庆生发产品有哪些 浏览:127
代理是怎么做到的 浏览:786
法院执行划扣程序多久到账 浏览:97
什么样的产品适合孕妇 浏览:286
线上哪些平台可以卖产品 浏览:999
轴承工程师产品有哪些 浏览:28
二手老车交易费用有哪些 浏览:564
成都葡萄酒代理多少钱 浏览:814