导航:首页 > 数据处理 > 应用数据分析可以了解哪些学情

应用数据分析可以了解哪些学情

发布时间:2023-07-25 21:24:43

‘壹’ 数据分析怎么学习呢需要学习什么

想要学习数据分析,首先你要知道成为一名数据分析师所需要具备的技能:

对于初级数据分析师来说,则需要了解统计相关的基础性内容,公式计算,统计模型等。当你获得一份数据集时,需要先进行了解数据集的质量,进行描述统计。

而对于高级数据分析师,必须具备统计模型的能力,线性代数也要有一定的了解。

对于分析工具,SQL 是必须会的,还有要熟悉Excel数据透视表和公式的使用,另外,还要学会一个统计分析工具,SAS作为入门是比较好的,VBA 基本必备,SPSS/SAS/R 至少要熟练使用其中之一,其他分析工具(如 Matlab)可以视情况而定。

数据分析领域最热门的两大语言是 R 和 Python。涉及各类统计函数和工具的调用,R无疑有优势。但是大数据量的处理力不足,学习曲线比较陡峭。Python 适用性强,可以将分析的过程脚本化。所以,如果你想在这一领域有所发展,学习 Python 也是相当有必要的。

当然其他编程语言也是需要掌握的。要有独立把数据化为己用的能力, 这其中SQL 是最基本的,你必须会用 SQL 查询数据、会快速写程序分析数据。当然,编程技术不需要达到软件工程师的水平。要想更深入的分析问题你可能还会用到:Exploratory analysis skills、Optimization、Simulation、Machine Learning、Data Mining、Modeling 等。

对业务的理解是数据分析师工作的基础,数据的获取方案、指标的选取、还有最终结论的洞察,都依赖于数据分析师对业务本身的理解。

对于初级数据分析师,主要工作是提取数据和做一些简单图表,以及少量的洞察结论,拥有对业务的基本了解就可以。对于高级数据分析师,需要对业务有较为深入的了解,能够基于数据,提炼出有效观点,对实际业务能有所帮助。对于数据挖掘工程师,对业务有基本了解就可以,重点还是需要放在发挥自己的技术能力上。

对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。对于数据挖掘工程师,罗辑思维除了体现在和业务相关的分析工作上,还包括算法逻辑,程序逻辑等,所以对逻辑思维的要求也是最高的。

数据可视化主要借助于图形化手段,清晰有效地传达与沟通信息。听起来很高大上,其实包括的范围很广,做个 PPT 里边放上数据图表也可以算是数据可视化。

对于初级数据分析师,能用 Excel 和 PPT 做出基本的图表和报告,能清楚地展示数据,就达到目标了。对于稍高级的数据分析师,需要使用更有效的数据分析工具,根据实际需求做出或简单或复杂,但适合受众观看的数据可视化内容。

数据分析师不仅需要具备破译数据的能力,也经常被要求向项目经理和部门主管提供有关某些数据点的建议,所以,你需要有较强的交流能力。


通过了解数据分析需要具备的技能,学习的方向也就迎刃而解了。



对于高级数据分析师,需要开始独立带项目,或者和产品做一些合作,因此除了沟通能力以外,还需要一些项目协调能力。

‘贰’ 数据分析需要掌握哪些知识

数学知识
对于初级数据分析师来说,则需要了解统计相关的基础性内容,公式计算,统计模型等。当你获得一份数据集时,需要先进行了解数据集的质量,进行描述统计。

而对于高级数据分析师,必须具备统计模型的能力,线性代数也要有一定的了解。分析工具
对于分析工具,SQL 是必须会的,还有要熟悉Excel数据透视表和公式的使用,另外,还要学会一个统计分析工具,SAS作为入门是比较好的,VBA 基本必备,SPSS/SAS/R 至少要熟练使用其中之一,其他分析工具(如 Matlab)可以视情况而定。编程语言
数据分析领域最热门的两大语言是 R 和 Python。涉及各类统计函数和工具的调用,R无疑有优势。但是大数据量的处理力不足,学习曲线比较陡峭。Python 适用性强,可以将分析的过程脚本化。所以,如果你想在这一领域有所发展,学习 Python 也是相当有必要的。

当然其他编程语言也是需要掌握的。要有独立把数据化为己用的能力, 这其中SQL 是最基本的,你必须会用 SQL 查询数据、会快速写程序分析数据。当然,编程技术不需要达到软件工程师的水平。要想更深入的分析问题你可能还会用到:Exploratory analysis skills、Optimization、Simulation、Machine Learning、Data Mining、Modeling 等。业务理解
对业务的理解是数据分析师工作的基础,数据的获取方案、指标的选取、还有最终结论的洞察,都依赖于数据分析师对业务本身的理解。

对于初级数据分析师,主要工作是提取数据和做一些简单图表,以及少量的洞察结论,拥有对业务的基本了解就可以。对于高级数据分析师,需要对业务有较为深入的了解,能够基于数据,提炼出有效观点,对实际业务能有所帮助。对于数据挖掘工程师,对业务有基本了解就可以,重点还是需要放在发挥自己的技术能力上。逻辑思维
对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。对于数据挖掘工程师,罗辑思维除了体现在和业务相关的分析工作上,还包括算法逻辑,程序逻辑等,所以对逻辑思维的要求也是最高的。数据可视化数据可视化主要借助于图形化手段,清晰有效地传达与沟通信息。听起来很高大上,其实包括的范围很广,做个 PPT 里边放上数据图表也可以算是数据可视化。

对于初级数据分析师,能用 Excel 和 PPT 做出基本的图表和报告,能清楚地展示数据,就达到目标了。对于稍高级的数据分析师,需要使用更有效的数据分析工具,根据实际需求做出或简单或复杂,但适合受众观看的数据可视化内容。协调沟通
数据分析师不仅需要具备破译数据的能力,也经常被要求向项目经理和部门主管提供有关某些数据点的建议,所以,你需要有较强的交流能力。

‘叁’ 数据分析需要掌握些什么知识

要想成为一名专业的数据分析师,就需要满足数据分析师的职业要求。数据分析师的职业要求可以总结为以下几个方面。
(1)掌握统计相关的数学知识
和统计相关的数学知识是数据分析师需要具备的基础知识,数据分析师可以根据自己的能力和水平学习相关的统计学知识,初级数据分析师和高级数据分析师需要对统计学知识掌握的程度是不一样的。
如果你是初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力就可以,如果了解常用的统计模型算法那会是你的加分项。
对高级数据分析师来说,只了解基础的统计学知识是不够的。统计模型的相关知识是高级数据分析师必备的能力,最好对线性代数(主要是矩阵计算相关知识)也有一些了解。
“工欲善其事,必先利其器”,要成为一名合格的数据分析师,会使用数据分析工具非常重要。这里所说的工具也就是数据分析软件,例如Excel、SPSS、SAS等。由于Excel通用性强、使用门槛低、功能强大,所以深受数据分析人员的喜爱,也是数据分析师必须掌握的一个数据分析工具,本书所涉及的数据分析内容均使用Excel进行讲解。当然,数据分析师也可以根据自己的能力选择性的掌握SPSS和SAS等进行高级数据分析的工具。
对于初级数据分析师来说,掌握Excel是硬性要求,必须能熟练使用数据透视表和公式,会使用VBA(一种宏语言)的话则是你的加分项。
对于高级数据分析师来说,使用数据分析工具是核心能力。VBA是必备技能,至少熟练使用SPSS/SAS/R其中的一种,可以根据具体情况选择掌握其他分析工具(MATLAB)。
不过,电商数据分析人员除了掌握Excel、SPSS和SAS等本地软件外,还需要掌握像生意参谋、京东商智等专门的电商数据获取和分析工具。
(3)理解业务
对业务的理解是数据分析师所有工作的基础,无论是数据获取方案、指标的选取还是得出最终结论,都依赖于数据分析师对业务本身的理解。
但是要学习和掌握业务知识需要长时间的积累,成为业务专家非常不易,数据分析师则是在业务专家之上的更深层次的思考和总结,否则在数据分析工作中谁指导谁都是个问题。
学习业务知识的方法有很多,以前的分析报告和取数案例都可以拿来研究,当然这也是一个循序渐进的过程。
(4)掌握数据分析方法
做数据分析一定要了解数据分析的方法、应用场景、使用过程以及优缺点,能够根据具体情况在实际工作中灵活应用,确保数据分析工作能够有效开展。
基本的数据分析方法有:平均分析法、分组分析法、对比分析法、交叉分析法、结构分析法、综合评价分析法、矩阵关联分析法等。
高级的数据分析方法包括:聚类分析法、回归分析法、类别分析法、因子分析法、对应分析法等。在做数据分析时,应该在明确目的的前提下选择适合的分析方法。
(5)了解基本设计原则
数据分析师需要通过图表把自己的分析结论和观点展现出来,根据相关的设计原则对图表进行调整,可以使数据分析结果一目了然。

‘肆’ 学习数据分析需要掌握哪些知识

具有数理统计,经济学,数据库原理以及相关知识;能熟练使用excel、spss、quanvert、sas等统计软件。
工作能力: 严谨的逻辑思维能力、学习能力、言语表达能力、管理能力
工作态度:积极主动、工作认真、工作严谨
具体要求:
1、根据数据分析方案进行数据分析,在既定时间内提交给市场研究人员;
2、能进行较高级的数据统计分析;
3、公司录入人员的管理和业绩考核;以及对编码人员的行业知识和问卷结构的培训;
4、录入数据库的设立,数据的校验,数据库的逻辑查错,对部分问卷的核对;

其他方面的要求:
1. 持证上岗。
2. 热爱本职工作,具有高度的责任心和忘我的工作精神,爱岗敬业,工作认真细致,能认真完成公司交给的各项工作任务。
3. 要求掌握较深的业务知识和计算机应用知识,能用行业各种应用软件进行各种数据分析和综合数据处理,加工成有用的信息提供领导进行决策;能配合系统管理员进行计算机网络维护及管理。
4. 负责本公司计算机信息网络数据的收集、传递(主要是上报)和管理工作,对各网点上报的数据和本机房传递的信息数据,要做好详细的“数据传递纪录”,对未按时间要求漏报和数据有误的网点要及时督促,每月将各经营站、点数据上报情况通报一次;负责各类数据的整理、汇总和分析处理工作,及时向本公司领导及有关部门上报信息数据,做好相关纪录;负责本公司网络信息数据的安全管理,及时做好各类数据及报表的备份工作,做好归档、保管工作,做好信息数据的保密工作,严禁向未授权单位、部门及个人提供各类信息数据;负责机房文件收发、归档和保管工作。
5. 遵守特定的工作时间:必须等各网点数据传输完毕核对无误后才能下班。

关于数据分析员:
数据分析员是根据数据分析方案进行数据分析的人员,能进行较高级的数据统计分析,负责公司录入人员的管理和业绩考核,以及对编码人员的行业知识和问卷结构的培训,和录入数据库的设立,数据的校验,数据库的逻辑查错,对部分问卷的核对等职责。

‘伍’ 数据分析需要掌握些什么知识

数据分析需要掌握的知识:
1、数学知识
数学知识是数据分析师的基础知识。对于初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力即可,了解常用统计模型算法则是加分。
对于高级数据分析师,统计模型相关知识是必备能力,线性代数(主要是矩阵计算相关知识)最好也有一定的了解。
2、分析工具
对于初级数据分析师,玩转Excel是必须的,数据透视表和公式使用必须熟练,VBA是加分。另外,还要学会一个统计分析工具,SPSS作为入门是比较好的。
对于高级数据分析师,使用分析工具是核心能力,VBA基本必备,SPSS/SAS/R至少要熟练使用其中之一,其他分析工具(如Matlab)视情况而定。
3、分析思维
比如结构化思维、思维导图、或网络脑图、麦肯锡式分析,了解一些smart、5W2H、SWOT等等那就更好了。不一定要掌握多深多全,但一定要了解一些。
4、数据库知识
大数据大数据,就是数据量很多,Excel就解决不了这么大数据量的时候,就得使用数据库。如果是关系型数据库,比如Oracle、mysql、sqlserver等等,你还得要学习使用SQL语句,筛选排序,汇总等等。非关系型数据库也得要学习,比如:Cassandra、Mongodb、CouchDB、Redis、 Riak、Membase、Neo4j 和 HBase等等,起码常用的了解一两个,比如Hbase,Mongodb,redis等。
5、开发工具及环境
比如:Linux OS、Hadoop(存储HDFS,计算Yarn)、Spark、或另外一些中间件。目前用得多的开发工具Java、python等等语言工具。

‘陆’ 数据分析要学习哪些

学什么?

数据分析要学的内容大致分为6个板块,分别是:

Excel

精通Excel分析工具,掌握Excel经典函数,准确快速地完成数据清洗,利用Excel数据透视及可视化,可以透过现象看本质。

MySQL

理解MySQL数据库相关概念及存储原理,掌握SQL基本的增、删、改、查等语法掌握数据库性能调优策略,熟练使用SQL进行数据清洗与数据规范化。

BI商业智能工具

了解商业智能的核心价值,精通FineReport、FineBI,快速挖掘数据价值,掌握行业场景应用。

Python

学习Python基本编程语言知识,了解Python程序的计算机运行原理,能够使用Python编程处理工作中的重复性工作。 掌握网络数据抓取技术,Python数据库应用开发,实现Python数据可视化操作,提高数据收集和数据分析能力。 掌握Python数据分析处理基础库,具有应用Python语言解决数据分析中实际问题能力。

数据分析思维与理论

掌握微积分、线性代数、概率论、参数估计、假设检验、方差分析等数理统计基础 掌握基本的数学、统计学知识,学习数据运营方法论、机器学习夯实基础,提升数据敏感性,建立数据思维和数据素养。

掌握如何撰写行业分析报告和数据分析项目流程,能够独立完成数据分析项目。 掌握常见的数据运营方法如AARRR、漏斗、ABTset、描述性统计分析、相关分析、指数系统搭建等,培养利用多种数据分析方法解决实际工作问题能力。

机器学习

掌握机器学习常用经典算法原理及sklearn代码的实现、机器学习算法的选取、调优及模型训练、神经网络的特点及原理,增加个人核心竞争力,拥有能够用相关数据挖掘算法为解决实际问题能力;奠定人工智能算法入门基础。

如何学?

至少花三个月掌握技术

“磨刀不误砍柴工”,要想从为“工人”,甚至熟悉工,也需要很多技能,因为怎么说数据分析师也是技术工种。我觉得至少你要花3个月时间来学习一些最基础的知识。

阅读全文

与应用数据分析可以了解哪些学情相关的资料

热点内容
流沙有哪些市场 浏览:623
大数据把多少小企业搞死 浏览:100
apachedruid是什么数据库 浏览:588
手机程序包换了怎么办 浏览:648
如何清除王者荣耀微信数据 浏览:503
网络扶贫产品有哪些 浏览:383
上技术学院需要准备什么 浏览:587
数据类型哪些是字符型 浏览:33
售卖伪造3c的产品怎么判 浏览:11
哪个手机上的小程序能看电视剧 浏览:249
技术领先者是什么 浏览:477
除了打电话报案发信息怎么报案 浏览:447
卡拉宝的目标市场有哪些 浏览:335
基金撤销交易后资金什么时候到账 浏览:19
如何建立小程序官网 浏览:392
剔除数据为什么要剔除金融行业 浏览:698
安全技术防范备案怎么做 浏览:206
lead用什么代理软件 浏览:598
新式家居产品有哪些 浏览:871
交易日送股一般多少个 浏览:97