导航:首页 > 数据处理 > 国内证券数据采集技术有哪些

国内证券数据采集技术有哪些

发布时间:2023-07-20 15:35:56

Ⅰ 简述传统数据采集的关键技术有哪些他们之间的关系是什么

大数据采集技术,大数据预处理技术,大数据存储及管理技术,大数据分析及挖掘技术,大数据展现与应用技术
数据采集是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得的各种类型的结构化、半结构化(或称之为弱结构化)及非结构化的海量数据,是大数据知识服务模型的根本。重点要突破分布式高速高可靠数据爬取或采集、高速数据全映像等大数据收集技术;突破高速数据解析、转换与装载等大数据整合技术;设计质量评估模型,开发数据质量技术。
大数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。重点解决复杂结构化、半结构化和非结构化大数据管理与处理技术。主要解决大数据的可存储、可表示、可处理、可靠性及有效传输等几个关键问题。开发可靠的分布式文件系统(DFS)、能效优化的存储、计算融入存储、大数据的去冗余及高效低成本的大数据存储技术;突破分布式非关系型大数据管理与处理技术,异构数据的数据融合技术,数据组织技术,研究大数据建模技术;突破大数据索引技术;突破大数据移动、备份、复制等技术;开发大数据可视化技术。
大数据分析技术。改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。
大数据技术能够将隐藏于海量数据中的信息和知识挖掘出来,为人类的社会经济活动提供依据,从而提高各个领域的运行效率,大大提高整个社会经济的集约化程度。

Ⅱ 数据采集技术是什么

数据采集技术指完成数据从源端获取,并传输到大数据平台,以供数据治理、数据服务使用。数据是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得的各种类型的结构化、半结构化(或称之为弱结构化)及非结构化的海量数据,是大数据知识服务模型的根本。重点要突破分布式高速高可靠数据爬取或采集、高速数据全映像等大数据收集技术;突破高速数据解析、转换与装载等大数据整合技术;设计质量评估模型,开发数据质量技术。
OceanMind海睿思数据采集包括公开数据采集和采集汇聚工具。
公开数据采集主要偏向于互联网公开数据的采集、汇聚,公开数据采集是一个灵活、便捷、高效、可扩展的互联网数据爬虫系统。可实现利用模板从指定公开网页上爬取数据,并提供给后续数据处理使用。
采集汇聚工具偏向于持有型数据的采集、汇聚,汇聚工具是可视化数据采集软件,外部数据通过采集工具将数据库或文件类型的数据转换为制定格式的文件(CSV、parquet)存放到指定的FTP路径,然后通过汇聚工具将FTP傻姑娘的文件汇聚至大数据平台。

Ⅲ 传统数据采集的关键技术有哪些他们之间的关系是什么

有大数据采集、大数据预处理、大数据存储及管理,是指从传感器和其它待测设备等模拟和数字被测单元中自动采集信息的过程。
传统数据挖掘方式,采集方法,内容分类,采信标准等都已存在既有规则,方法论完整。

Ⅳ 常用的大数据技术有哪些

大数据技术包括数据收集、数据存取、基础架构、数据处理、统计分析、数据挖掘、模型预测、结果呈现。

1、数据收集:在大数据的生命周期中,数据采集处于第一个环节。根据MapRece产生数据的应用系统分类,大数据的采集主要有4种来源:管理信息系统、Web信息系统、物理信息系统、科学实验系统。

2、数据存取:大数据的存去采用不同的技术路线,大致可以分为3类。第1类主要面对的是大规模的结构化数据。第2类主要面对的是半结构化和非结构化数据。第3类面对的是结构化和非结构化混合的大数据,

3、基础架构:云存储、分布式文件存储等。

4、数据处理:对于采集到的不同的数据集,可能存在不同的结构和模式,如文件、XML 树、关系表等,表现为数据的异构性。对多个异构的数据集,需要做进一步集成处理或整合处理,将来自不同数据集的数据收集、整理、清洗、转换后,生成到一个新的数据集,为后续查询和分析处理提供统一的数据视图。

5、统计分析:假设检验、显着性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。

6、数据挖掘:目前,还需要改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。

7、模型预测:预测模型、机器学习、建模仿真。

8、结果呈现:云计算、标签云、关系图等。

Ⅳ 大数据采集技术有哪些

我知道的数据采集方法有这几种:
第一种:软件接口方式

通过各软件厂商开放数据接口,实现不同软件数据的互联互通。这是目前最为常见的一种数据对接方式。
优势:接口对接方式的数据可靠性与价值较高,一般不存在数据重复的情况;数据可通过接口实时传输,满足数据实时应用要求。
缺点:①接口开发费用高;②需协调多个软件厂商,工作量大且容易烂尾;③可扩展性不高,如:由于新业务需要各软件系统开发出新的业务模块,其和大数据平台之间的数据接口也需做相应修改和变动,甚至要推翻以前的所有数据接口编码,工作量大、耗时长。

第二种:软件机器人采集
软件机器人是目前比较前沿的软件数据对接技术,即能采集客户端软件数据,也能采集网站网站中的软件数据。
常见的是博为小帮软件机器人,产品设计原则为“所见即所得”,即不需要软件厂商配合的情况下,采集软件界面上的数据,输出的结果是结构化的数据库或者excel表。
如果只需要界面上的业务数据,或者遇到软件厂商不配合/倒闭、数据库分析困难的情况下, 利用软件机器人采集数据更可取,尤其是详情页数据的采集功能比较有特色。
技术特点如下:

①无需原软件厂商配合;②兼容性强,可采集汇聚Windows平台各种软件系统数据;③输出结构化数据;④即配即用,实施周期短、简单高效;⑤配置简单,不用编程,每个人都可以DIY一个软件机器人;⑥价格相对人工和接口,降低不少。
缺点:采集软件数据的实时性有一定限制。

第三种:网络爬虫
网络爬虫是模拟客户端发生网络请求,接收请求响应,一种按照一定的规则,自动地抓取万维网信息的程序或者脚本。
爬虫采集数据的缺点:①输出数据多为非结构化数据;②只能采集网站数据,容易受网站反爬机制影响;③使用人群狭窄,需要有专业编程知识才能玩转。

第四种:开放数据库方式
数据的采集融合,开放数据库是最直接的一种方式。
优势:开放数据库方式可以直接从目标数据库中获取需要的数据,准确性高,实时性也有保证,是最直接、便捷的一种方式。
缺点:开放数据库方式也需要协调各软件厂商开放数据库,这需要看对方的意愿,一般出于安全考虑,不会开放;一个平台如果同时连接多个软件厂商的数据库,并实时获取数据,这对平台性能也是巨大挑战。
以上便是常用的4种数据采集方式,各有优势,适合不同的应用场景。

Ⅵ 数据采集的基本方法

常见的数据采集方式有问卷调查、查阅资料、实地考查、试验。
1、问卷调查:问卷调查是数据收集最常用的一种方式,因为它的成本比较低,而且得到的信息也会比较全面。
2、查阅资料:查阅资料是最古老的数据收集的方式,通过查阅书籍,记录等资料来得到自己想要的数据。
3、实地考查:实地考察是到指定的地方去做研究,指为明白一个事物的真相,势态发展流程,而去实地进行直观的,局部进行详细的调查。
4、实验:实验收集数据的优点是数据的准确性很高,而缺点是未知性很大,不管实验的周期还是实验的结果都是不确定性的。

阅读全文

与国内证券数据采集技术有哪些相关的资料

热点内容
篮球技术不到位怎么办 浏览:930
集体土地确权怎么交易 浏览:492
美团技术服务费折扣系数怎么续 浏览:313
涂料产品检测哪些 浏览:287
亚马逊上传的产品怎么清理 浏览:42
微分子技术用到护肤品中会怎么样 浏览:68
如何找到小程序推送消息 浏览:298
美股没有盘前交易说明什么 浏览:64
地图产品怎么传递 浏览:721
枣庄智慧经营代理哪里有店 浏览:766
制作微信小程序时摄氏度如何表达 浏览:891
数字程序卡哪里有卖 浏览:122
流沙有哪些市场 浏览:625
大数据把多少小企业搞死 浏览:101
apachedruid是什么数据库 浏览:590
手机程序包换了怎么办 浏览:650
如何清除王者荣耀微信数据 浏览:503
网络扶贫产品有哪些 浏览:384
上技术学院需要准备什么 浏览:589
数据类型哪些是字符型 浏览:35