1. 电商数据分析指标都有哪些该如何进行分析
此文是对最近学习的电商相关知识点做一个巩固
传统零售利用二八法则生存,电商靠长尾理论积累销售。
传统零售是小数据,电商是大数据。
传统零售是“物流”,零售过程就是商品的流动;电商是“信息流”,顾客通过搜索、比较、评论、分享产生信息,达到购买的目的。
传统零售注重体验感,电商注重服务和效率。
传统零售是做加法,电商是做乘法。传统零售是通过一家家店扩大影响力,电商通过资金的投入迅速抢占市场。
传统零售的主要成本是房租和人工成本,电商的主要成本是物流和营销成本。
总结:电商和传统零售虽有千万种差别,但总归都是零售,融合是二者注定的趋势,即现在火热的新零售。
传统零售的数据主要是进销存数据、顾客数据和消费数据。电商的数据却复杂得多,数据来源渠道也很多样化
电商数据来源广泛,常规的流量数据、交易数据、会员数据在品牌的交易平台都有提供。一些第三方网站也提供数据源及分析功能。
1、网络统计:包括流量相关的网站统计、推广统计、移动统计三部分内容。分析内容包括趋势分析、来源分析、页面分析、访客分析、定制分析和优化分析。
2、谷歌分析:包括流量分析工具、内容分析、社交分析、移动分析、转化分析、广告分析几部分内容。
3、Crazy egg热力图:主要特色是对页面热点追踪分析的热力图。
4、CNZZ数据专家(友盟):包括站长统计、全景统计、手机客户端、云推荐、广告管家、广告效果分析和数据中心等。
还有一些无需埋点监测数据的产品,如GrowingIO、神策数据、诸葛io等。
以下为用思维导图进行梳理的电商数据分析指标,总共包括六大类
对访问你网站的访客进行分析,基于这些数据指标可以网页进行改进
这里需要注意两个点
1)影响因素不同:UV 价值更受流量质量的影响;而客单价更受卖的货的影响;
2)使用场景不同:UV 价值可以用来评估页面 / 模块的创造价值的潜力;客单价可以用来比较品类和商品特征,但一个页面客单价高,并不代表它创造价值的能力强,只能得出这个页面的品类更趋近于是卖高价格品类的。
如果网站是为了帮助客户尽快完成他们的任务(比如:购买,答疑解惑),那么在线时长应当是越短越好;如果希望客户一同参与到网站的互动中来,那么时间越久会越好。所以,分析在线时长是否越长越好,要根据产品定位来具体分析
从注册到成交整个过程的数据,帮助提升商品转化率。
对于一个新电商来说,积累数据,找准营运方向比卖多少货,赚多少钱更重要。这个阶段主要 关注流量指标 ,指标如下:
对于已经经营一段时间的电商,通过数据分析 提高店铺销量 就是首要任务。此阶段的重点指标是 流量和销售指标 ,指标如下:
对于已经有规模的电商,利用数据分析 提升整体营运水平 就很关键。重点指标如下:
数据指标分为追踪指标、分析指标和营运指标,营运指标就是绩效考核指标。一个团队的销售额首先是追踪出来的,其次是分析出来的,最后才是绩效考核出来的。销售追踪自然是按天、按时段说话,分析一般是以周和月为单位,绩效考核常常是以月为主、以年为辅。
执行人员侧重过程指标,管理层侧重结果指标。对于数据分分析人员来说要学会根据职位提供不同的数据。
1、无流量不电商,对于流量分析,我们常用漏斗图来做分析,几乎每个流量的细分都可以用到漏斗图。
2、漏斗图就是一个细分和溯源的过程,通过不同的层次分解从而找到转化的逻辑。
3、漏斗图的弱点,就是反应一条转化路径的形态,我们可以稍加修改实现漏斗图的对比功能。
1、流量的质量分为质和量两方面,只有质没有量的流量是没有多少实际价值的,流量的质体现在不同的营销目的上,例如获得点击、注册、收藏、购买或者获取利润的目的。
2、可以通过四象限分析图来对比分析流量的质量。下图是针对购买的转化率和流量的四象限图,其中第一象限的流量应该是高质量的,流量和转化率均高于平均值;第二象限渠道的流量转化率高,但量不大,通过搜索来的流量大部分属于此类;第四象限流量属于质低量高,站外购买的流量这种情况比较多;第三象限属于质低量低的双低流量,不用特别维护,任其发展即可。
3、图中的Y轴可以根据具体的分析目的替换成点击率、注册率、收藏率、ROI(单元产出)等进行对比分析。
四象限分析图中,X轴、Y轴、分析对象都可以根据不同的目的进行替换。
4、散点图的四象限分析可以结合趋势,或者演变成四象限气泡图,气泡图的大小为ROI,这种四象限图信息量更大。
1、电商的销售针对比传统零售复杂很多,主要复杂在流量的多层次多渠道上,互联网的好处是几乎能将用户的每个动作记录下来,然后我们从中找到关键点进行诊断即可。下图,是一个类似杜邦分析的图,从值(图中红色)和率(图中蓝色)两个方面,订单、新客、老客三个维度将销售额拆成五个层次,每个层次间具有加或乘的逻辑关系。
2、销售额是一个结果指标,图中的20个指标是过程指标,每个指标的变化都会影响最终的销售额,基本都是正相关。(折扣和销售额的关联会稍微复杂一些)
3、通过上图,使用对比、细分的原则分析可以判断出哪儿些指标变化对销售额产生了影响。
参考书籍为《数据化管理——洞悉零售及电子商务运营》
2. 数据分析指标有那些
用户行为类指标
用户行为指标是互联网行业和传统行业最大区别。传统行业,用户行为发生在门店里,极难用数字化手段记录,因此只有在发生交易时,才能记录数据。
传统企业的大部分数据都是交易数据。而互联网行业依托小程序/H5/APP,能记录用户在每个页面的点击,相当于在网上店铺的每一步动作都有记录,因此能分析很多东西。
具体到指标上,可以套用AARRR模型,分模块展开:
拉新:主要用于分析拉新的转化效率与质量。拉新是很多互联网公司最重要的任务,拉新成本是很多互联网公司最大的成本支出,因此拉新关注度极高。
通过这些指标的分析,能让负责商品运营的同事直观看到商品畅销/滞销情况,从而调整商品进销存计划,避免商品积压/缺货。
注意,虚拟商品原则上是没有库存的(或者说库存想设多少设多少)。但是滥发虚拟商品,又会引发互联网中通货膨胀与商品贬值。比如游戏里稀有皮肤卖的贵,是因为稀有才贵,为了短期收入搞大优惠,一但烂大街,反而大家都不稀罕了。
所以控虚拟商品的库存,不是看商品动销率或者在库时间,而是看GMV整体目标。在达成GMV整体目标情况下,高中低端商品保持一个稳定的库存结构,避免烂大街。
3. 数据采集与分析的指标有哪些
讲解几个数据分析的常用指标
增长研究社
08-04 · 优质科技领域创作者
评价指标是评判数据表现的衡量标准,它是数据分析中非常重要的部分,也是产品经理必须掌握的重点内容。不同的数分任务采用不同的评价指标,对于同一种任务在不同场景下也会采用不同的评价指标。
例如在检测垃圾邮件这个场景中,这是一个典型的二分类问题,所以可以用精确率和AUC曲线这两个指标判断模型的效果;在人脸识别场景中,使用误识率、拒识率和ROC曲线这三个指标评判模型的效果。
不同指标的着重点不一样,一个指标在不同场景下适用性可能不一样,产品经理需要学习不同指标的特性,在项目中根据实际需要选择不同的评价指标。下文中我们重点讲解一些产品经理常用的评价指标。
01 混淆矩阵
混淆矩阵(Confusion Matrix)是评价模型精度的一种标准格式,用一个N行N列的矩阵形式来表示。矩阵每一列代表预测值,每一行代表实际值。
从混淆矩阵的名字不难看出来,它的作用是表明多个类别之间是否有混淆,也就是模型到底判断对了多少个结果,有多少个结果判断错了。同时混淆矩阵能够帮助我们理解准确率、精确率和召回率的区别。
面对一个二分类问题时,通常我们会将结果表示为正类与负类,两者可以随意指定。在上述区分猫狗图片的例子中,我们假定猫为正类、狗为负类。那么在实际进行预测的时候就会出现四种情况,如下图所示:
混淆矩阵
如果这张图片是猫,机器预测出来的结果也是猫,这种情况称为真正类(True Positive,以下简称TP);
如果这张图片是狗,机器预测出来的结果也是狗,这种情况称为真负类(True Negative,以下简称TN);
如果这张图片是猫,机器预测出来的结果是狗,这种情况称为假负类(False Negative,以下简称FN);
如果这张图片是狗,机器预测的结果是猫,则为假正类(False Positive,以下简称FP)。
02 准确率
准确率(Accuracy)是指预测正确的样本占总样本的比例,即模型找到的真正类与真负类与整体预测样本的比例。用公式表示为:
Accuracy=(TP+TN)/(TP+TN+FP+FN)
准确率的取值范围为[0,1],一般情况下取值越大,代表模型预测能力越好。
假设上述猫狗图片分类的例子中,猫狗图片各有500张。最后模型预测的结果中真正类有318个,真负类有415个,假正类有75个,假负类有182个。根据准确率的定义可以算出来目前模型的准确率为:(318+415)/(1000)=0.73。
准确率是评价模型效果最通用的指标之一,描述模型找到“真”类别的能力。也就是说模型准确识别出猫和狗的概率为0.73。但是在使用的时候有两点需要我们注意。首先是准确率没有针对不同类别进行区分,最后求得的准确率对每个类别而言是平等对待的,这种评价方式在很多场景下是有欠缺的。
在本例中,虽然可以看到模型的整体准确率是73.30%,但是从结果中明显可以看出来,模型对于猫的识别效果远不如对狗的识别效果。如果我们模型的目的是为了把猫的图片挑出来,那么这个准确率就有些虚高。
在实际的病患诊断中,计算机诊断出某患者患有癌症,实际上却未患癌症与计算机诊断出某患者未患有癌症,而实际上却患有癌症这两种情况的重要性不一样,不能一概而论。我们需要明确后续是降低误诊率还是提高确诊率,才能让后续模型优化更有针对性。
另外在正负样本极不平衡的情况下,准确率这个指标存在很大的缺陷。例如在银行的全量客户中,要寻找适合推荐信托产品的超高净值客户是非常难的。因为这部分人群要求存款较多、收入较高,比较稀少,往往只有万分之一的概率。
如果一个预测客户适不适合信托产品的模型用准确率去评判,哪怕模型把全部客户预测成负类,即全部都是不适合的情况,那么这个模型的精度也有 99% 以上。
但这个指标就失去了原有的意义,因为无法找到任何高净值的人群。所以我们一再强调,没有万能的指标,根据场景选择合适的指标非常重要。
03 精确率与召回率
精确率(Precision)和召回率(Recall)是一对好兄弟,虽然是两个不同的评价指标,但它们互相影响,通常一起出现。在很多书上又把精确率称为查准率,把召回率称为查全率。
召回率是针对原始样本而言的指标,它表示原始样本中的正例有多少被预测正确。
原始样本中的正例有两种情况,一种是把原来的正类预测成正类(TP),另一种就是把原来的正类预测为负类(FN),这两种情况组成了原始样本所有的正例。计算公式为:
Recall=TP/(TP+FN)
上述模型中识别猫类图片的召回率为:
318/(318+182)=0.63
从这个角度可以看出来总共500张猫的图片,模型只找对了318张,相比准确率而言,召回率更真实地反应了模型的效果。
而精确率是针对预测结果而言的指标,它表示预测为正类的样本中有多少是对的。预测结果为正例有两种情况,一种就是把正类预测为正类(TP),另一种就是把负类预测为正类(FP)。所以精确率的计算公式为:
Precision=TP/(TP+FP)
即上述模型中识别猫类图片的精确率为:
318/(318+75)=0.81
从这个指标可以看出来模型总共把393张图片预测为猫,其中只有318张图片预测正确。所以模型可能存在欠拟合的情况,将部分狗的照片判断成猫,判断为正类的条件太宽松。下一步优化的时候可以选择适当降低条件以此提高模型效果。如下图所示可以看出精确率与召回率的区别:
精确率与召回率
在理想情况下,我们希望精确率和召回率两者都越高越好。
然而事实上这两者在很多情况下是互相矛盾的。当召回率变高时意味着需要尽可能找到原始样本的正例,因此模型覆盖的数量会变多,模型就更高的几率犯错,将原本不属于该分类的样本也加进来,这就导致精确率下降。
如果我们希望模型尽可能多得找出猫的图片,我们会想办法提高召回率;如果我们希望模型找到的图片少一点但找出来的都是猫的图片,我们会想办法提高精确率。
有两个很典型的场景可以说明这两个指标实际运用的区别,一个是对于地震的预测,我们希望尽可能预测到所有的地震,哪怕这些预测到的地震中只有少数真正发生了地震,在这个时候我们就可以牺牲精确率。
宁愿发出100次警报,但是把10次真实的地震都预测对了,也不希望预测了10次但是只有8次真实的地震被预测出来了,因为只要有1次地震没被发现都会造成巨大的损失。因此这是一个“宁可抓错,不可放过”的场景。
还有一种是垃圾邮件分类的场景,我们希望模型能够尽可能找到所有垃圾邮件,但是我们更不希望把自己正常的邮件被分到垃圾邮件中,哪怕是一封正常的邮件,这会对用户造成很严重的后果。对于少数没有被识别出来的垃圾邮件,其实用户是可以容忍的。
这时候我们宁可少分类成垃圾邮件,但必须确保分的都是对的,这就是一个“宁可放过,不可抓错”的场景。因此在不同的场合中,需要产品经理根据实际情况,自己判断希望是精确率比较高或是召回率比较高。
另外精确率和准确率是比较容易混淆的两个评估指标,两者的核心区别在于:精确率是一个二分类指标,只适用于二分类任务,而准确率能应用于多分类任务。
04 ROC曲线
在逻辑回归的分类模型里,对于正负例的界定,通常会设一个阈值。大于阈值的样本判定为正类,小于阈值的样本为负类。如果我们减小这个阈值,会让更多的样本被识别为正类,从而提高了正类的识别率,但同时也会使得更多的负类被错误识别为正类。
直接调整阈值可以提升或降低模型的精确率和召回率,也就是说使用精确率和召回率这对指标进行评价时会使得模型多了“阈值”这样一个超参数,并且这个超参数会直接影响模型的泛化能力。在数学上正好存在ROC曲线能够帮助我们形象化地展示这个变化过程。
ROC曲线是一个画在二维平面上的曲线,平面的横坐标是假正类率(FalsePositive Rate,简称FPR),计算公式为:
FPR=FP/(FP+TN)
纵坐标是真正类率(True Positive Rate,简称TPR),计算公式为:
TPR=TP/(TP+FN)
对于一个分类器而言,每一个阈值下都会有一个FPR和TPR,这个分类器就可以映射成ROC平面上的一个点。当我们调整这个分类器分类时使用的阈值,就可以得到一个经过(0,0),(1, 1)的曲线,这条曲线就是这个分类器的ROC曲线,如下图所示。
ROC曲线
从图中可以看到,所有算法的ROC曲线都在y=x这条线的上方,因为y=x表示了随机的猜测的概率。所有二分类问题随便猜正确或不正确都是50%的准确率。
一般情况下不存在比随机猜测的准确率更糟糕的算法,因为我们总是可以将错误率转换为正确率。如果一个分类器的准确率是40%,那么将两类的标签互换,准确率就变为了60%。
从图中可以看出来,最理想的分类器是到达(0,1)点的折线,代表模型的准确率达到100%,但是这种情况在现实中是不存在的。如果我们说一个分类器A比分类器B好,实际上我们指的是A的ROC曲线能够完全覆盖B的ROC曲线。如果有交点,只能说明A在某个场合优于B,如下图所示。
分类器A与分类器B的ROC曲线
ROC曲线通常搭配着它对应的比率图一起使用,我们继续用猫狗图片分类的例子说明这两个图怎么看。原本我们猫狗的图片各有500张,如所示图形的X轴代表预测的概率值,Y轴代表观察的数量。
假设我们用一个新的分类器对图片进行分类,分类结果用黑色线代表狗图片的分布,用灰色代表猫图片的分布。模型给出的分值越高代表模型判断这张图片是猫的把握越大,反之模型的给出的分值越低代表模型判断这张图片不是猫的把握越大,也就是说这张图片更有可能是狗。
从下图中可以看出来这个分类器的分类效果还是挺好的,基本上基本把两个物群的分布分开,ROC曲线也非常靠近(0,1)这个点。
某分类器下的ROC曲线
如上图所示,如果将阈值设为0.3,左边划线部分的面积代表模型判断为狗的图片数量有300张左右,并且从图中可以看出来这300张图片全部分类正确。
如果将阈值设为0.5,则左边划线部分的面积代表模型判断为狗的图片有530张左右,从图中重叠部分可以看出来大约有40个分类结果是包含错误分类的,这些错误分类包括实际是狗的图片被分成猫的情况以及实际是猫的图片被分类成狗的情况。
0.3阈值与0.5阈值下的分类结果
这时候我们用另外一个分类器再进行分类,结果如图3-16所示。可以看到整个分类结果向右偏移,同时模型的效果变差,因为两个分类结果重叠的部分变大,无论我们把阈值设在哪里都会比上一个分类器产生更多的错误分类。
假如这时我们采用“宁可抓错,不可放过”的原则把阈值设置为0.8,则右边划线部分只有200个左右不会被分类为狗的图片,其余800个结果全部会被判定为狗的图片,尽管这里面有350个分类结果是错误的结果。
新的分类器下的ROC曲线
从上述例子中看出来,ROC曲线可以帮助我们从图像的角度分辨两个分类结果的分布情况以及选择模型合适的阈值。因此也是很多产品经理比较喜爱的指标之一。
这时很多读者可能会有疑问,既然已经有那么多评价标准,为什么还要使用ROC呢?
原因在于ROC曲线有个很好的特性:当测试集中的正负样本的分布变换的时候,ROC曲线能够保持不变。在实际的数据集中经常会出现样本类不平衡,即正负样本比例差距较大,而且测试数据中的正负样本也可能随着时间变化,使用ROC曲线不管是数据集怎么变换,都有直观的展示效果。
05 AUC值
ROC曲线一定程度上可以反映分类器的分类效果,但始终是以图像的形式,不能告诉我们直接的结果。我们希望有一个指标,这个指标越大代表模型的效果越好,越小代表模型的效果越差。于是引入了AUC值(Area Under Curve)的概念。
AUC是数据分析中最常用的模型评价指标之一,实际上AUC代表的含义就是ROC曲线下的面积,如下图所示,它直观地反映了ROC曲线表达的分类能力。AUC值通常大于0.5小于1,AUC(面积)越大的分类器,性能越好。
AUC值的图形展示
AUC值的定义是:从所有正类样本中随机选取一个样本,再从所有负类样本中随机选取一个样本,然后分类器对这两个随机样本进行预测,把正类样本预测为正类的概率为p1,把负类样本预测为正类的概率为p0,p1>p0的概率就等于AUC值。
即AUC值是指随机给定一个正样本和一个负样本,分类器输出该正样本为正的概率值比分类器输出该负样本为正的那个概率值要大的可能性,AUC值越高代表模型的排序能力越强。理论上,如果模型把所有正样本排在负样本之前,此时AUC的取值为1,代表模型完全分类正确,但这种情况在实际中不可能出现。
总结AUC值的四种取值结果有:
AUC=1时,代表采用这个预测模型,不管设定什么阈值都能得出完美预测,模型能够将所有的正样本都排在负样本前面。但是在现实中不存在完美的分类器。
0.5<AUC<1时,代表模型的效果比随机猜测的准确率高,也就是说模型能够将大部分的正样本排在负样本前面,模型有一定的预测价值。
AUC=0.5时,代表模型的预测效果与随机猜测一样,只有50%的准确率。也就是说模型完全不能区分哪些是正样本哪些是负样本,没有预测价值。
AUC<0.5时,代表模型的预测效果比随机猜测还差;但只要将样本正负例互换,结果就能优于随机猜测。
4. 6西格码是什么意思
6西格码是什么意思?
回答:
六西格玛是一项以数据为基础,追求几乎完美的质量管理方法。
西格玛是一个希腊字母σ的中文译音,统计学用来表示标准偏差,用"σ"度量质量特性总体上对目标值的偏离程度。几个西格玛是一种表示品质的统计尺度。任何一个工作程序或工艺过程都可用几个西格玛表示。六个西格玛可解释为每一百万个机会中有3.4个出错的机会,即合格率是99.99966%。而三个西格玛的合格率只有93.32%。六个西格玛的管理方法重点是将所有的工作作为一种流程,采用量化的方法
分析流程中影响质量的因素,找出最关键的因素加以改进从而达到更高的客户满意度。
六西格玛(Six Sigma)是在九十年代中期开始从一种全面质量管理方法演变成为一个高度有效的企业流程设计、改善和优化技术,并提供了一系列同等地适用于设计、生产和服务的新产品开发工具。继而与全球化、产品服务、电子商务等战略齐头并进,成为全世界上追求管理卓越性的企业最为重要的战略举措。六西格玛逐步发展成为以顾客为主
体来确定企业战略目标和产品开发设计的标尺,追求持续进步的一种质量管理哲学。
六西格玛类似于SPC(统计性工作程序控制)吗?
六西格玛是一个致力于完美和追求客户满意的管理理,SPC是一个支持六西格玛这个管理理念的工具。所有那些传统的质量管理工具,像SPC、MSA、FMEA、QFD等均是实现六西格玛必不可少的工具。
实施六西格玛的目的是什么?
为企业实施六西格玛提供必须的管理工具和操作技巧;为企业培养具备组织能力,激励能力,项目管理技术和数理统计诊断能力的领导者,这些人才是企业适应变革和竞争的
核心力量。从而使企业降低质量缺陷和服务偏差并保持持久性的效益,促进快速实现突破性绩效,帮助企业达到战略目标。
六西格玛适合于什么样的企业?
它适用于任何水平、任何企业,它功能强,可以测量到百万分之一的水平。因为它是要影响到整个公司,实施六西格玛需要上层领导的大力协助。中国的企业在中国加入WTO后,必将面临日益激烈的来自全球的竞争,同时信息化的飞速发展将从根本上改变经济的组织结构和消费行为,如何在这种新的经济环境中生存、成长、壮大是对每一个企业领
导人的挑战。六西格玛,由于其严谨的方法和实施步骤、以面向最终用户来建立营运体系的管理思想,对于中国企业建立卓越的管理体系、获取并保持在国际市场上的竞争优势提供一个非常有效的管理思想和实践。现在,一些中小型企业也开始运用六西格玛工具,来提高效率和创新开发能力,为扩大企业规模和提高国际竞争力奠定坚实的基础。
我们经常调查我们的客户,发现他们对我们的公司很满意,六西格玛怎么能帮助我们呢?
如果你们的客户只是满意,并没有填上最好的一栏,请注意,他们现在可能满意,但是客户非常易变,如果他们发现市场上还有(可能)更好的选择,他们很可能会从你公司
跳到另一公司。以往经验表明,那些在调查中填写"好"的客户比那些填"极好"的客户有六倍更倾向于更换公司。六西格玛可以帮你提高他们对你公司的认可,同时在既定客户满意度基础上,企业可以大幅度降低为实现该目标而支付的成本,从而在激烈的竞争环境中显着提升企业的经营利润。
六西格玛能提高基线吗?
如果我们看到那些词,譬如:返工、重新检验、重新修改等等,我们就会有概念,我们生产过程中有多少个浪费,六西格玛致力于减少浪费,提高基线。一般企业的次品成本
占销售的10%-25%,试想,这个数字能够提高多大幅度的基线。
六西格玛保证零个次品吗?
六西格玛保证一个极小且有限的数目的次品,这个数目非常地小以至于被认为基本上完美,不保证零个次品这个事实吸引了许多人来应用六西格玛,因为大多数人不相信有真
正完美,大多数愿意把目标订到在一百万中只有三个次品,因为它是一个有限的数字。
有目标之后,他们就愿意去努力,这正是我们需要的开始。
我们是服务性企业,如何运用六西格玛?
不管你是服务性或生产性企业,你们都会有工作程序,六西格玛致力于优化工作程序。如果一个工作程序浪费许多我们的努力或是另一种工作程序产生许多次品,这两种工作
程序都一样伤害到公司本身和我们的顾客。服务行业可能比生产行业更需要提高,因为工程师们从一开始就致力于优化他们的生产程序,而服务行业的白领们却始终找不到衡量服务标准的尺度。在服务业中,谁能越快找到这个量化的标准,谁就能越快地提高自身的竞争力。六西格玛是由顾客开始由顾客结束,并且是一个确定什么是客户的真正要求和找出没有满足顾客期望的缺陷,以便建立新的服务流程和产品设计开发能力或提高客户满意度的过程。
我们已经有了一个质量控制系统,为什么我们还需要六西格玛?
六西格玛是一套连续的优化工具,它能够提高质量、减少消耗,如果你们的企业现在并没有在进步,你的企业可能正在落伍。六西格玛不是一个标准,而是一种文化,是从防
护的标准到放开思想改革创新的突破性理念。
我们正在申请ISO9000,六西格玛能够促进还是阻碍我们的努力?
ISO9000和它的衍生(QS-9000、TL-9000、AS-9000等)能给我们提供一个基本的质量保
证系统,一个工作程序化思想的基础。要成为世界级的企业,你们需要一个更先进的质
量系统,更可靠的质量能够让我们的客户更满意。六西格玛能够产生更高层次的凝聚力
,ISO/QS-9000在文件记录与监测方面支持六西格玛。请注意,ISO-9000 2000版和现在的QS-9000要求持续的优化。六西格玛是一个非常好的管理理念和工作方法,它既促进企业改革又能保证在企业各个层面上的持续优化。