㈠ 常见的信息资源管理方式主要有哪些它们各自的特点是什么
1技术手段
(1)基本内容和主要方法
以计算机和通信技术为基础的现代信息系统和信息网络和与之适应的信息加工方法是技术手段的基本内容和主要方法.
(2)随着信息技术的发展,不同的数据库和功能强大的信息系统研制成功,数据库成为了现代信息资源的主要存储形式,信息系统成为了信息资源管理的基本手段,信息网络成为现代信息资源主要的存储和流通场所,信息系统和信息网络作为基恩的技术手段备受关注。
2.经济手段。
运用经济杠杆的利益诱导作用,使信息资源的开发和利用机构从自身的经济利益上关心自己的经济活动,是一种间接的辅助手段。
(1)经济杠杆
同市场决定的市场参数和有政府规定政府参数共同组成经济参数的三大类,尽管其由政府人为规定,但是同市场参数一样体现信息资源本身特点及其开发利用活动的规律,只是在市场产生不能有效的起作用或者严重偏离政府目标时才使用
(3) 特点
是一种引导性的,非强制性的措施。可以促进信息资源开发利用机构的微观经济活动,有利于发挥市场机制作用,能正确体现信息资源本身特征和其开发利用活动的规律。
(4) 功能
1) 调节功能:包括各信息资源开发利用机构之间,各环节之间,以及国家,集体,个人之间的利益关系。
2) 控制功能:通过价格,利率和税率等经济杠杆引导信息资源开发利用活动向信息资源管理的目标靠拢。
3) 核算功能:借助价格,利润工资等经济杠杆核算劳动耗费,比较投入产出,平衡社会需求。
4) 监督功能:借助会计,审计,银行监管等手段,根据法律规章制度,对信息资源开发利用机构及其与 政 府,职工和相关企业之间的关系进行监督。
3.法律手段
用以协调信息资源开发利用活动的各种有关法律规范的总称。
(1) 运用法律手段.
各个层次的信息资源管理者依靠国家政权的力量,通过经济立法和司法机构,运用经济法规调整信息资源开发利用各个机构之间,各个环节之间复杂的经济关系,处理经济矛盾,解决经济纠纷,惩办经济犯罪。维护信息资源开发利用的正常秩序。
(2) 特点
普遍的约束性,严格的强制性,相对的稳定性,明确的规定性
4.行政手段
凭借国家政权的权威,采取命令,指示的形式直接管理控制信息资源及其相关活动。
是必要的辅助手段,其合理运用
1) 有利于整顿经济秩序2)加强组织,减少混乱。3)有助于更好的运用其他三种手段。
(1) 应注意以下问题
!)明确使用范围和条件
行政手段一般是不得已而为之,明确其范围和使用条件是为了使其真正的有效适用,又不破坏阻碍市场机制发挥作用
2)提供运用行政手段的决策水平
各种的命令在发布之前都要有一个决策的过程,为了避免主观片面性,提高决策的科学有效性,应建立合理的决策程序,决策责任制和审批制度,研究如何使决策活动在高水平上进行。
3) 防止多头管理
很多信息资源利用机构隶属于多个部门,关系复杂,在实践中应注意各部门的配合和协调,不可政出多门。
4) 原则性与灵活性的结合
由于主客观的因素谁也不能保证出台的政策就一定都是科学的,都反映了信息资源开发利用活动的规律,在具体实践中要注重灵活性与原则性的有机结合
6. 总结
(1) 技术手段是基础,最基本的手段
(2) 经济和法律手段作用越来越重要,其运用不仅是信息资源管理科学化,还有效的促进和适应社会主义和市场经济
(3) 必要的行政手段不可或缺,特殊情况下有优越性,有直接,迅速,有效的特点。
(4) 继续完善发展技术手段,强化经济法律手段,辅以必要的行政手段,强调各手段之间配合协调
㈡ 系统的数据管理方式有哪些
值型和非数值型两类,这些数据在计算机中都必须以二进制形式表示。一串二进制数既可表示数量值,也可表示一个字符、汉字或其他。一串二进制数代表的数据不同,含义也不同。这些数据在计算机的存储设备中是如何进行组织存储的?
数据单位
· 位(bit)
位(bit),音译为“比特”,是计算机存储设备的最小单位,由数字0或1组成。
· 字节(Byte)
字节(Byte),简写为“B”,音译为“拜特”,简写为“B”。8个二进制位编为一组称为一个字节,即:1B = 8bit。字节是计算机处理数据的基本单位,即以字节为单位解释信息。通常,一个ASCII码占1个字节;一个汉字国标码占2个字节;整数占2个字节;实数,即带有小数点的数,用4个字节组成浮点形式等。
· 字(word)
计算机一次存取、处理和传输的数据长度称为字,即:一组二进制数码作为一个整体来参加运算或处理的单位。一个字通常由一个或多个字节构成,用来存放一条指令或一个数据。
· 字长
一个字中所包含的二进制数的位数称为字长。不同的计算机,字长是不同的,常用的字长有8位、16位、32位和64位等,也就是经常说的8位机、16位机、32位机或64位机。例如,一台计算机如果用8个二进制位表示一个字,就说该机是八位机,或者说它的字长是8位的;又如,一个字由两个字节组成,即16个二进制位,则字长为16位。字长是衡量计算机性能的一个重要标志。字长越长,一次处理的数字位数越大,速度也就越快。
存储设备
用来存储信息的设备称为计算机的存储设备,如内存、硬盘、软盘及光盘等。不论是哪一种设备,存储设备的最小单位是“位”,存储信息的单位是字节,也就是说按字节组织存放数据。
· 存储单元
表示一个数据的总长度称为计算机的存储单元。在计算机中,当一个数据作为一个整体存入或取出时,这个数据存放在一个或几个字节中组成一个存储单元。存储单元的特点是,只有往存储单元送新数据时,该存储单元的内容用新值代替旧值,否则永远保持原有数据。
· 存储容量
某个存储设备所能容纳的二进制信息量的总和称为存储设备的存储容量。存储容量用字节数来表示,如:4MB、2GB等,其关系为:1KB = 1024 B、1MB = 1024 KB、1GB = 1024 MB。1千字节相当于210 Byte,即1024 Byte, 记为1KB;1兆字节相当于220 Byte,即1024 KB,记为1MB;而1吉字节相当于230 Byte ,即1024 MB,记为1GB。
内存容量是指为计算机系统所配置的主存(RAM)总字节数,度量单位是“KB”“MB”,如32MB、64MB、128MB等。外存多以硬盘、软盘和光盘为主,每个设备所能容纳的信息量的总字节数称为外存容量,度量单位是“MB”“GB”,如800MB、6.5GB。
目前,高档微型计算机的内存容量已从几MB发展到几百MB,外存容量已从几百MB发展到几GB~几十GB。
编址与地址
· 编 址
对计算机存储单元编号的过程称为“编址”,是以字节为单位进行的。
· 地 址
存储单元的编号称为地址。
注意:地址号与存储单元是一一对应的,CPU通过单元地址访问存储单元中的信息,地址所对应的存储单元中的信息是CPU操作的对象,即数据或指令本身。地址也是用二进制编码表示,为便于识别通常采用16进制。
问题2
它所提供的功能有以下几项:
(1)数据定义功能。DBMS提供相应数据语言来定义(DDL)数据库结构,它们是刻画数据库框架,并被保存在数据字典中。
(2)数据存取功能。DBMS提供数据操纵语言(DML),实现对数据库数据的基本存取操作:检索,插入,修改和删除。
(3)数据库运行管理功能。DBMS提供数据控制功能,即是数据的安全性、完整性和并发控制等对数据库运行进行有效地控制和管理,以确保数据正确有效。
(4)数据库的建立和维护功能。包括数据库初始数据的装入,数据库的转储、恢复、重组织,系统性能监视、分析等功能。
(5)数据库的传输。DBMS提供处理数据的传输,实现用户程序与DBMS之间的通信,通常与操作系统协调完成。
问题3
着名数据库管理系统
MS SQL SYBASE DB2 ORACLE MySQL ACCESS VF 常见的数据库管理系统 目前有许多数据库产品,如Oracle、Sybase、Informix、Microsoft SQL Server、Microsoft Access、Visual FoxPro等产品各以自己特有的功能,在数据库市场上占有一席之地。下面简要介绍几种常用的数据库管理系统。
数据库管理系统(DBMS)的主要功能
DBMS的主要目标是使数据作为一种可管理的资源来处理,其主要功能如下: 1.数据定义:DBMS提供数据定义语言,供用户定义数据库的三级模式结构、两级映像以及完整性约束和保密限制等约束。 2.数据操作:DBMS提供数据操作语言,供用户实现对数据的操作。 3.数据库的运行管理:数据库的运行管理功能是DBMS的运行控制、管理功能,包括多用户环境下的并发控制、安全性检查和存取限制控制、完整性检查和执行、运行日志的组织管理、事务的管理和自动恢复,即保证事务的原子性。这些功能保证了数据库系统的正常运行。 4.数据组织、存储与管理:DBMS要分类组织、存储和管理各种数据,包括数据字典、用户数据、存取路径等,需确定以何种文件结构和存取方式在存储级上组织这些数据,如何实现数据之间的联系。数据组织和存储的基本目标是提高存储空间利用率,选择合适的存取方法提高存取效率。 5.数据库的保护:数据库中的数据是信息社会的战略资源,随数据的保护至关重要。DBMS对数据库的保护通过4个方面来实现:数据库的恢复、数据库的并发控制、数据库的完整性控制、数据库安全性控制。DBMS的其他保护功能还有系统缓冲区的管理以及数据存储的某些自适应调节机制等。 6.数据库的维护:这一部分包括数据库的数据载入、转换、转储、数据库的重组合重构以及性能监控等功能,这些功能分别由各个使用程序来完成。 7.通信:DBMS具有与操作系统的联机处理、分时系统及远程作业输入的相关接口,负责处理数据的传送。对网络环境下的数据库系统,还应该包括DBMS与网络中其他软件系统的通信功能以及数据库之间的互操作功能。
㈢ 空间数据库中,矢量数据的管理方式有哪些,各有什么优缺点
矢量数据管理的方式分三种:
优点:
除通过 OID 连接之外,图形数据和属性数据几乎是完全独立组织、管理与检索的。
其中图形系统采用高级 语言编程管理,可以直接操纵数据文件,因而图形用户界面与图形文件处理是一体的,两者中间没有逻辑裂缝。
缺点:
①需要同时启动图形文件系统和关系数据 库系统,甚至两个系统来回切换,使用起来不方便。
②属性数据和图形数据通过 ID 联系起来, 使查询运算、模型操作运算速度慢。
③数据发布和共享困难。
④属性数据和图形数据分开储存,数据的 安全性、一致性、完整性、并发控制以及数据损坏后的恢复方面缺少基本的功能。
⑤缺乏表示空间对象及其关系的能力。
对变长的几个数据进行关系范式分解,分解成定长记录的数据表进行存储。
将图形数据的变长部分处理成 Binary 二进制 Block 块字段。
优点:
图形数据与属性数据都采用现有的关系型数据 库存储,使用关系数据库标准机制来进行空间数据与属性数据的连接。
缺点:
①处理一个空间对象时,需要进行大量的 连接操作,非常费时,并影响效率
②二进制块的读写效率要比定长的属性字段慢的多,特别是涉及对象的嵌套,速度更慢。
优点:
主要解决了空间数据的变长记录的管理,由数据库软件商进行扩展,效率要比前面的二进制块的管理高 的多。
缺点:
没有解决对象的嵌套问题,空间数据结构也不能由用户任意定义,使用上仍受到一定限制。
㈣ 大数据时代数据管理方式研究
大数据时代数据管理方式研究
1数据管理技术的回顾
数据管理技术主要经历了人工管理阶段、文件系统阶段和数据库系统阶段。随着数据应用领域的不断扩展,数据管理所处的环境也越来越复杂,目前广泛流行的数据库技术开始暴露出许多弱点,面临着许多新的挑战。
1.1 人工管理阶段
20 世纪 50 年代中期,计算机主要用于科学计算。当时没有磁盘等直接存取设备,只有纸带、卡片、磁带等外存,也没有操作系统和管理数据的专门软件。该阶段管理的数据不保存、由应用程序管理数据、数据不共享和数据不具有独立性等特点。
1.2 文件系统阶段
20 世纪 50 年代后期到 60 年代中期,随着计算机硬件和软件的发展,磁盘、磁鼓等直接存取设备开始普及,这一时期的数据处理系统是把计算机中的数据组织成相互独立的被命名的数据文件,并可按文件的名字来进行访问,对文件中的记录进行存取的数据管理技术。数据可以长期保存在计算机外存上,可以对数据进行反复处理,并支持文件的查询、修改、插入和删除等操作。其数据面向特定的应用程序,因此,数据共享性、独立性差,且冗余度大,管理和维护的代价也很大。
1.3数据库阶段
20 世纪 60 年代后期以来,计算机性能得到进一步提高,更重要的是出现了大容量磁盘,存储容量大大增加且价格下降。在此基础上,才有可能克服文件系统管理数据时的不足,而满足和解决实际应用中多个用户、多个应用程序共享数据的要求,从而使数据能为尽可能多的应用程序服务,这就出现了数据库这样的数据管理技术。数据库的特点是数据不再只针对某一个特定的应用,而是面向全组织,具有整体的结构性,共享性高,冗余度减小,具有一定的程序与数据之间的独立性,并且对数据进行统一的控制。
2大数据时代的数据管理技术
大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据有 3 个 V,一是大量化(Volume),数据量是持续快速增加的,从 TB级别,跃升到 PB 级别;二是多样化(Variety),数据类型多样化,结构化数据已被视为小菜一碟,图片、音频、视频等非结构化数据正以传统结构化数据增长的两倍速快速创建;三是快速化 (Velocity),数据生成速度快,也就需要快速的处理能力,因此,产生了“1 秒定律”,就是说一般要在秒级时间范围内给出分析结果,时间太长就失去价值了,这个速度要求是大数据处理技术和传统的数据挖掘技术最大的区别。
2.1 关系型数据库(RDBMS)
20 世纪 70 年代初,IBM 工程师 Codd 发表了着名的论文“A Relational Model of Data for Large Shared DataBanks”,标志着关系数据库时代来临。关系数据库的理论基础是关系模型,是借助于集合代数等数学概念和方法来处理数据库中的数据,现实世界中的实体以及实体之间的联系非常容易用关系模型来表示。容易理解的模型、容易掌握的查询语言、高效的优化器、成熟的技术和产品,使得关系数据库占据了数据库市场的绝对的统治地位。随着互联网 web2.0 网站的兴起,半结构化和非结构化数据的大量涌现,传统的关系数据库在应付 web2.0 网站特别是超大规模和高并发的 SNS(全称 Social Networking Services,即社会性网络服务) 类型的 web2.0 纯动态网站已经显得力不从心,暴露了很多难以克服的问题。
2.2 noSQL数据库
顺应时代发展的需要产生了 noSQL数据库技术,其主要特点是采用与关系模型不同的数据模型,当前热门的 noSQL数据库系统可以说是蓬勃发展、异军突起,很多公司都热情追捧之,如:由 Google 公司提出的 Big Table 和 MapRece 以及 IBM 公司提出的 Lotus Notes 等。不管是那个公司的 noSQL数据库都围绕着大数据的 3 个 V,目的就是解决大数据的 3个 V 问题。因此,在设计 noSQL 时往往考虑以下几个原则,首先,采用横向扩展的方式,通过并行处理技术对数据进行划分并进行并行处理,以获得高速的读写速度;其次,解决数据类型从以结构化数据为主转向结构化、半结构化、非结构化三者的融合的问题;再次,放松对数据的 ACID 一致性约束,允许数据暂时出现不一致的情况,接受最终一致性;最后,对各个分区数据进行备份(一般是 3 份),应对节点失败的状况等。
对数据的应用可以分为分析型应用和操作型应用,分析型应用主要是指对大量数据进行分类、聚集、汇总,最后获得数据量相对小的分析结果;操作型应用主要是指对数据进行增加、删除、修改和查询以及简单的汇总操作,涉及的数据量一般比较少,事务执行时间一般比较短。目前数据库可分为关系数据库和 noSQL数据库,根据数据应用的要求,再结合目前数据库的种类,所以目前数据库管理方式主要有以下 4 类。
(1)面向操作型的关系数据库技术。
首先,传统数据库厂商提供的基于行存储的关系数据库系统,如 DB2、Oracle、SQL Server 等,以其高度的一致性、精确性、系统可恢复性,在事务处理方面仍然是核心引擎。其次,面向实时计算的内存数据库系统,如 Hana、Timesten、Altibase 等通过把对数据并发控制、查询和恢复等操作控制在内存内部进行,所以获得了非常高的性能,在很多特定领域如电信、证券、网管等得到普遍应用。另外,以 VoltDB、Clustrix 和NuoDB 为代表的 new SQL 宣称能够在保持 ACDI 特性的同时提高了事务处理性能 50 倍 ~60 倍。
(2)面向分析型的关系数据库技术。
首先,TeraData 是数据仓库领域的领头羊,Teradata 在整体上是按 Shared Nothing 架构体系进行组织的,定位就是大型数据仓库系统,支持较高的扩展性。其次,面向分析型应用,列存储数据库的研究形成了另一个重要的潮流。列存储数据库以其高效的压缩、更高的 I/O 效率等特点,在分析型应用领域获得了比行存储数据库高得多的性能。如:MonetDB 和 Vertica是一个典型的基于列存储技术的数据库系统。
(3)面向操作型的 noSQL 技术。
有些操作型应用不受 ACID 高度一致性约束,但对大数据处理需要处理的数据量非常大,对速度性能要求也非常高,这样就必须依靠大规模集群的并行处理能力来实现数据处理,弱一致性或最终一致性就可以了。这时,操作型 noSQL数据库的优点就可以发挥的淋漓尽致了。如,Hbase 一天就可以有超过 200 亿个到达硬盘的读写操作,实现对大数据的处理。另外,noSQL数据库是一个数据模型灵活、支持多样数据类型,如对图数据建模、存储和分析,其性能、扩展性是关系数据库无法比拟的。
(4)面向分析型的 noSQL 技术。
面向分析型应用的 noSQL 技术主要依赖于Hadoop 分布式计算平台,Hadoop 是一个分布式计算平台,以 HDFS 和 Map Rece 为用户提供系统底层细节透明的分布式基础架构。《Hadoop 经典实践染技巧》传统的数据库厂商 Microsoft,Oracle,SAS,IBM 等纷纷转向 Hadoop 的研究,如微软公司关闭 Dryad 系统,全力投入 Map Rece 的研发,Oracle 在 2011 年下半年发布 Big Plan 战略计划,全面进军大数据处理领域,IBM 则早已捷足先登“,沃森(Watson)”计算机就是基于 Hadoop 技术开发的产物,同时 IBM 发布了 BigInsights 计划,基于 Hadoop,Netezza 和 SPSS(统计分析、数据挖掘软件)等技术和产品构建大数据分析处理的技术框架。同时也涌现出一批新公司来研究Hadoop 技术,如 Cloudera、MapRKarmashpere 等。
3数据管理方式的展望
通过以上分析,可以看出关系数据库的 ACID 强调数据一致性通常指关联数据之间的逻辑关系是否正确和完整,而对于很多互联网应用来说,对这一致性和隔离性的要求可以降低,而可用性的要求则更为明显,此时就可以采用 noSQL 的两种弱一致性的理论 BASE 和 CAP.关系数据库和 noSQL数据库并不是想到对立的矛盾体,而是可以相互补充的,根据不同需求使用不同的技术,甚至二者可以共同存在,互不影响。最近几年,以 Spanner 为代表新型数据库的出现,给数据库领域注入新鲜血液,这就是融合了一致性和可用性的 newSQL,这种新型思维方式或许会是未来大数据处理方式的发展方向。
4 结束语
随着云计算、物联网等的发展,数据呈现爆炸式的增长,人们正被数据洪流所包围,大数据的时代已经到来。正确利用大数据给人们的生活带来了极大的便利,但与此同时也给传统的数据管理方式带来了极大的挑战。