㈠ R语言自学笔记-2内置数据集
#b站视频——R语言入门与数据分析
#内置数据集
#固定格式的数据(矩阵、数据框或一个时间序列等)
#统计建模、回归分析等试验需要找合适的数据集
#R内置数据集,存储在,通过
help(package="datasets")
#通过data函数访问这些数据集
data()
#得到新窗口 前面:数据集名字 后面:内容
#包含R所有用到的数据类型,包括:向量、矩阵、列表、因子、数据框以及时间序列等
#直接输入数据集的名字就可以直接使用这些数据集
#输出一个向量
rivers
#是北美141条河流长度
#这些数据集的名字都是内置的,一般我们在给变量命名时最好不要重复
#否则数据集在当前对话中会被置换掉
#例如
rivers<-c(1,2,3)
rivers
#不过影响不大
#再使用data函数重新加载这个数据集就可以了
data("rivers")
rivers
#一些常用内置数据集
#默认介绍页面只有名字和介绍,并没有给出数据分类
#哪些是向量、矩阵、数据框等?
#查看数据集除了直接敲数据集名字显示数据之外
#还可以使用help函数查看每个数据集具体的内容
help("mtcars")
euro
#欧元汇率,长度为11,每个元素都有命名
#输出向量的属性信息
names(euro)
#将5个数据构成一个数据框
向量
state.abb #美国50个州的双字母缩写
state.area #美国50个州的面积
state.name #美国50个州的全称
因子
state.division #美国50个州的分类,9个类别
state.region #美国50个州的地理分类
#
state<-data.frame(state.name,state.abb,state.area,state.division,state.region)
state
state.x77 #美国50个州的八个指标
state.x77
VADeaths #1940年弗吉尼亚州死亡率(每千人)
volcano #某火山区的地理信息(10米×10米的网格)
WorldPhones #8个区域在7个年份的电话总数
iris3 #3种鸢尾花形态数据
#以上矩阵→适合画热图
heatmap(volcano)
#这里只是作为一个演示,还需要对这个图进行一些调整
#更复杂的数据结构
Titanic #泰坦尼克乘员统计,是一个数组
UCBAdmissions #伯克利分校1973年院系、录取和性别的频数
crimtab #3000个男性罪犯左手中指长度和身高关系
HairEyeColor #592人头发颜色、眼睛颜色和性别的频数
occupationalStatus #英国男性父子职业联系
#类矩阵
eurodist #欧洲12个城市的距离矩阵,只有下三角部分
Harman23.cor #305个女孩八个形态指标的相关系数矩阵
Harman74.cor #145个儿童24个心理指标的相关系数矩阵
#R中内置最多的数据集——数据框
cars #1920年代汽车速度对刹车距离的影响
iris #3种鸢尾花形态数据
mtcars #32辆汽车在11个指标上的数据
rock #48块石头的形态数据
sleep #两药物的催眠效果
swiss #瑞士生育率和社会经济指标
trees #树木形态指标
USArrests #美国50个州的四个犯罪率指标
women #15名女性的身高和体重
#列表
state.center #美国50个州中心的经度和纬度
#类数据框
Orange #桔子树生长数据
#时间序列数据,和数据框类似,不同的是具有时间序列的顺序,是数据分析中非常常见的格式
#能反映出变化情况以及变化的趋势等
#因此有很多专门的方法用于时间序列的数据分析
co2 #1959-1997年每月大气co2浓度(ppm)
presidents #1945-1974年每季度美国总统支持率
uspop #1790–1970美国每十年一次的人口总数(百万为单位)
#除了内置数据集之外,许多R扩展包中也内置了很多数据集
#这些数据集作为扩展包的函数使用的案例
#加载R包之后这些数据集也同样被加载进来
#例如MASS包中的Cars93数据
#包含了27个变量,是1993年93辆汽车的型号指标
install.packages("MASS")
library("MASS")
help("Cars93")
#使用data函数在参数package中等于对应R包的名字,即可列出每个R包中包含的数据集
#ex
data(package="MASS")
#显示R中所有可用的数据集
data(package=.packages(all.available = TRUE))
#不加载R包使用其中的数据集
data(Chile,package="car")
Chile
#> data(Chile,package="car")
#Warning message:
# In data(Chile, package = "car") : data set ‘Chile’ not found
#> Chile
#Error: object 'Chile' not found
install.packages("car")
library("car")
help("Chile")
㈡ R语言自学笔记-3设置路径、R包操作
#设置默认路径
#显示当前工作目录(软件默认使用工作目录)
getwd()
#修改默认工作目录
setwd(dir = "e:/Rwork/")
#提示工作目录
getwd()
#查看目录下包含的文件
list.files()
#或者
dir()
#R包安装
install.packages("vcd")
#显示库所在的位置
.libPaths()
#显示库里有哪些安装包
library()
#载入包
library(vcd)
#or
require(vcd)
#直接输入函数看某些函数来自于R的哪个包
#如何使用R包
help(package="vcd")
help(package="ggplot2")
#查看包的信息,列出R包的基础内容,显示内置的数据集的内容,给包中的函数作为案例来使用
library(help="vcd")
#还有一些包中的函数,是包的核心内容,扩展了R的功能
Arthritis
#列出包中所有包含的函数
ls("package:vcd")
#每个函数如何使用查看对应帮助文档
#列出R包中包含的所有数据集
data(package="vcd")
#使用完一个包之后,将包从内存中移除
detach("package:vcd")
#再使用
Arthritis
#会出现报错:需要重新再加载
#删除已安装的包
remove.packages("vcd")
#会将R包从硬盘上彻底删除,无法继续使用了,用得不多
#R包的批量移植(更换新设备)
#列出当前环境中已安装的R包
installed.packages()
#取第一列,,,使用下标来访问数据框的第一列
installed.packages()[,1]
#将所以R包名字保存到一个文件中
Rpack<- installed.packages()[,1]
save(Rpack,file = "Rpack.Rwork")
#将这个文件移到另一个设备上
#在另一个设备上使用load函数打开这个文件
#存到另外一个变量Rpack中
#看到这些R包
#Rpack
#批量安装这些R包
#使用一个for循环
for(i in Rpack)install.packages(i)
#如何获取R的帮助信息
help.start()
#查看某个函数的功能
help(sum)
#or
?plot
?sum
#快速了解函数参数而不想查阅详细文档
args(plot)
#查看函数使用案例
example(mean)
example("hist")
#列出R的一些案例图
demo(graphics)
#查看R安装的某个包的帮助文档
help(package=ggplot2)
#有些R包包含vignette文档,这中文档包含更多内容,也更加规范,里面有简介、教程、开发文档等
vignette()
#不是每个包都包含这种格式的文档
vignette("xts")
#有时安装了某包但使用help命令搜索不到相关函数,是因为没有载入这个包
#需用使用library函数载入这个包
#载入之后才能使用help函数找到相关文档
#或者直接在help命令中加上package选项 等于 要搜索R包的名字,这种方法比较麻烦
#??接要搜索函数名字,这种情况下不加载包也可以
#有些情况下,不知道具体的函数名,只能模糊搜索
#查找与绘制热图相关的帮助信息(使用这条命令进行本地搜索)
help.search(heatmap)
#提示搜索不到
#因为需要加上引号
help.search("heatmap")
#搜到stats包中的heatmap函数,可以用来绘制热图
#help.search("heatmap")也可以简写成下面一条命令
??heatmap#不需要加引号
#列出所有包含关键字的内容
apropos("sum")
#可以通过mod参数调整查询的内容
apropos("sum",mod="function")#只列出函数
#help.search或??都是进行本地的文档搜索
#有时搜索不到或者文档太老了可以使用RSiteSearch()函数进行网络搜索
RSiteSearch(matlab)
#运行函数会使用默认浏览器来访问R官网,在官网中进行搜索,列出更多的结果
#可以利用搜索引擎进行问题搜索
㈢ 有哪位大侠用R语言读取过SQL Server2008(非SQL Server20016)中SSAS中的多维数据集数据,求解答!谢谢!
新建具体的角色,根据需求定义相应的权限,即可
对于访问控制需求(这里以SQL Server 2005自带的示例说明)有如下说明:假设Adventure Works Cycles将全球的销售按国家和地区分为不同的分公司(Australia分公司、Canada分公司、France分公司、Germany分公司、United Kingdom分公司、United States分公司),
总公司CEO可以看到每个分公司的销售情况,分公司的经理只能看到自己所在的分公司的销售情况。分析需求可以得知,实际上需要根据用户来决定用户访问的数据,可以利用SQL Server 2005 Analysis Service中定义角色的方式来控制。
定义角色可以在多维数据集开发环境中定义,也可以完成多维数集部署之后在数据库服务器端定义。
多维数据集角色是一类访问权限的集合,可以在角色中定义属于这个角色的用户能访问什么数据,不能访问什么数据。定义了角色之后,可以为这个角色添加成员,成员是服务器Windwos账户或者是域账户。当某个角色赋于某个成员之后,客户端使用该用户登陆的时候,只能看到角色中定义的权限访问多维数据集。如果在开发环境定义的角色必须先保存然后部署才能生效。
下面具体介绍设置方法(前台测试工具用普科(ProClarity)):
1、新建Windows测试账户“Jeffrey”。不要定义成Administrator组,因为Administrator组的用户自动拥有访问多维数集的权限。
2、打开Analysis Servie 项目工程,在角色列表项中单击右键新建角色,打开新建角色对框。
3、设置访问权限(如图1)。
图1
以Jeffery用户登陆,customer下的区域维度所有成员只有Australi,成功的限制Jeffery用户只能访问Australi数据