A. 电商数据分析需要统计哪些指标
最重要的就是这几个了:
1 、商品数据分析:电商平台定期都要对商品销售进行分析,比如针对各个不同商品的销量、库存分析、商品评论等。做商品数据分析,可以从时间维度或者从不同商品的类别、价格等多个维度来做分析,这里可以做的数据图表类型很多,比如从时间维度、商品类别、价格维度等;
以上电商相关的可视化图表的制作工具为BDP个人版,可以将各个平台数据统一整合到BDP,然后做好一次分析图表,后期就不需要重复分析啦!
B. 电商运营如何做数据分析
电商一般有这些数据指标,差不多就够了,可以参考下:
1、网站整体运营情况;
2、销售数据(订单数据);
订单模板分享:
https://me.bdp.cn/share/index.html?shareId=sdo_
3、用户行为数据;
用户模板分享:
https://me.bdp.cn/share/index.html?shareId=sdo_
4、商品数据;
5、客户咨询数据;
咨询模板分享:
https://me.bdp.cn/share/index.html?shareId=sdo_
6、售后服务数据;
7、推广投放数据;
投放模板分享:
https://me.bdp.cn/share/index.html?shareId=sdo_
8、营销活动数据;
9、财务数据:盈利、成本等
--> 基本指标篇 <--
1、销售数据
商品方面:
1、总销售额,总销量
2、热销商品top N,热销品类top N (这些是件数,也就是销量)
3、商品销售额贡献top N,品类销售额贡献 top N (这些是金额,有些大件商品)
还可以看的更细一点,每件商品的利润不一样,可以算出来:
4、利润额贡献top N,品类利润额贡献 top N。
——以上有助于你划分哪些商品来引流,哪些商品来促销。
5、浏览量商品最高 top N,浏览量品类最高 top N。
——看看有啥商品浏览量高却卖不出去的,要调查原因是价格不好还是什么?
客户方面
总访客、新访客、新注册用户、客单价
用户地域分布、用户设备来源分布(浏览器或设备)、用户渠道来源分布(访问网站、网络推广、券妈妈之类的……)
活动期间访问趋势(一般是个线图 横轴是时间 纵轴是访问量 多线图还可以加一根销售额)
2、运营数据
客户行为数据
1、每日uv、pv等等……
2、热区图(把用户的行为做一个简单的可视化呈现,看看哪里点的最多,活动页面下面几屏有没有热度,如果下面有想要主推的利润高的产品,要及时往上挪)
3、转化漏斗(从访问、注册、加购、下单、付款做一个漏斗,看到底哪个环节流失客户最多,有bug修bug,有流程不顺要改善)
推广数据
1、推广总费用,总收入,ROI
2、各渠道费用,点击量,收入,ROI(可以用分组条图或柱线图来展示各渠道的费用与收入,投入高的渠道效果不一定好,通过对比可以筛选性价比最高的推广渠道)
--> 工具篇 <--
说完基本指标,说说工具好啦。我看到题主问除了excel还有啥,当然不能靠excel。
原始数据辣眼睛~
做表比较慢,而且相对不太智能,数据多的时候,绝对不能手抖~
传递起来太慢了,动不动好几十兆,要是做成ppt或者pdf吧,又要费好几个小时的时间。
在效率为王的时代,我们不是为了在活动过程中就强化好的地方、修正不好的地方吗?
等ppt做好了黄花菜都凉了。
看看要是数据直接成这样了会不会很好看?
就是有这样的神器~鼠标拖一拖、拽一拽,左边的excel就变成右边的可视化图表了!
然后看(领)表(导)的人就不用暗自运气了,
只要看看颜色,比比大小、长短、高低,哪里需要整、哪里需要改,哪里需要赞,一目了然!
分析工具就是 运营|整合分散的运营数据,实时分析、精准洞察
追踪客户行为的工具可以用: GrowingIO 官网-硅谷新一代无埋点用户行为数据分析产品
线上表单工具: 伙伴办公 - 领先的移动办公与数据管理平台
项目协作工具: Team Collaboration Solutions
C. 做电商要看哪些数据
构建电商数据分析的基本指标体系,主要分为8个类指标。
1.总体运营指标:从流量、订单、总体销售业绩、整体指标进行把控,起码对运营的电商平台有个大致了解,到底运营的怎么样,是亏是赚。
2.网站流量指标:即对访问你网站的访客进行分析,基于这些数据可以对网腔悄雀页进行改进,以及对访客的行为进行分析等等。
3.销售转化指标:分析从下单到支付整个过程的数据,帮助你提升商品转化率。也可以对一些频繁异常的数据展开分析。
4.客户价值指标:这里主要就是分析客户的价值,可以建立RFM价值模型,找出那些有价值的客户,精准营销等等。
5.商品类指标:主要分析商品的种类,那些商品卖得好,库存情况,以及可以建立关联模型,分析那些商品同时销售的几率比较高,而进行捆绑销售,有点像啤酒喝尿布的故事。
6.市场营销活动指标,主要监控某次活动给电商网站带来的效果,以及监控广运察告的投放指标。
7.风控类指标:分伍早析卖家评论,以及投诉情况,发现问题,改正问题。
8.市场竞争指标:主要分析市场份额以及网站排名,进一步进行调整。
D. 电商运营的基本数据指标有哪些
电商运营的基本数据指标四个指标,如下:
第一个指标:商品集中度,表示的销售额或者销售量之中,占比80%(具体数字可以自行约定)的商品数量或者比例。一般来讲,商品集中度越高越方便下单和追单,也就是补货更加容易,但是同时也暴露优质商品较少,有潜在风险,尤其季节性快消品类目,一旦处于换季边缘,集中度高的商品不给力,整个销售业绩将受到重挫,所以要联系所处品类的行业参考值,合理观察“商品集中度”;
第二个指标:商品动销率,商品动销率=动销品种数简雀店铺经营总品种数*100%,动销品种数:店铺里有销售的商品种类总数;
第三个指标:库销比,库销比=店铺即时库存或期末库存周期内总销售,其中库存和销售可以是数量亦可以是金额;
第四个指标:客户重合度,现在很多电商公司都是实施全网铺货和多品牌的战略(多品牌定位可以使市场覆盖面更广且抵御风险能力更强),为了使新品牌更快更有效的启动和成长,通常的做法是在初期把成熟品牌的网站流量导入到新品牌,加速其生长,这时候一定要计算新品牌和老品牌之间的客户重合度,以便达到一定的阈值可以使新品牌与老品牌解绑,让其独立行走。
过早地撤走流量可能致使新品牌发育迟缓甚至发育不良,过晚撤走流量可能致使多品牌同质化,品牌定位无区隔,不能有效产生增量市场。当然,追踪成熟品牌与新品牌重合客户的差异和特质只用“重合度”一个指标显然是不够的,我们可以这样来比较两个品牌,假设成熟品牌是A,新品牌是B:
(1)两个品牌的客户重合比例是多少?
(2)在(1)的基础上,计算重合客户的重复滑亮购买率?
(3)在(1)的基础上,计算重合客户自从在B买过商品之后就再也没有回到A购物过的客户比例?
(4)在(1)(2)(3)的基础上同时满足,客户的比例是多少?
这里必须着重强调一点:数据指标的统计务必保证100%的准确性。数据的准确性不仅决定了将来做数据分析丶挖掘和数学建模的深度与广度,更体现了数据的权威性,尤其关键指标的统计倘若经常出现差池,会让所有人对数据失去信任,对基于数据得出的结论也随之信心瓦解了。在电商运营中,常见的网店运营指标有如下几个点:
1.流量类指标独立访客数(uv),指访问电商网站的不重复用户数....
2.订单产生效率指标总订单数量,即访客完成网上下单的订单数之和.访问到下单的转化率,即电商网站下单的次数与拦让早访问该网站的次数之比.
3.总体销售业绩指标网站成交额(gmv),电商成交金额,即只要网民下单,生成订单号,便可以计算在gmv里面....
4.整体指标销售毛利,是销售收入与成本的差值.销售毛利中只扣除了商品原始成本,不扣除没有计入成本的期间费用(管理费用、财务费用、营业费用).
E. 电商平台应该分析哪些数据具体怎么去分析
众所周知,电商平台定期都要对商品销售进行分析,比如针对各个不同商品的销量、库存分析、商品评论等。做商品数据分析,可以从时间维度或者从不同商品的类别、价格等多个维度来做分析,这里可以做的数据图表类型很多。
一、时间维度
从时间维度上来看,除了显示分析周期的数据,最常用的分析方式是同比和环比,时间区间可以是年、季和月,甚至是周,不碧销罩过周相对用的少。
二、商品类别、价格维度
本次分析我主要是从商品类别、价格等多角度来进行商品数据分析,先是商品总的数据预览,如图(图表在BDP个人版上制作的):
这是选取8月23日的数据,可以看出,整个平台的上架的商品量还有4372万,量还比较悔闹多;商品好评率为93%,是整个平台的平均值,那应该还算不错啦!本月的月销量还有12%,只有24-31日一共8天,完成剩下的12%应该问题不大,相当于这个超额完成销量啦,是不是平台近期上架了很多夏天商品,所以8月份超额完成也是正常,比如游泳三件套、风扇等等。还是这个月做了什么活动,让这个月的销量比预定的目标稍微好一些......数据真实的反应是这样,至于原因还是需要自己去找哈。
自己平台上的上架商品的数量、价格分布情况,作为运营者应该很了解的斗拿,均价当然也要了解,均价可能直接影响到网站客单价,网站的价格定位甚至是主要人群定位都会很清晰。比如,某个网站均价5000,那可能可以属于轻奢侈品网站了,可能主要人群是年收入过10万的女白领等等,这个依不同网站而定。
以上只是简单分析商品的某些数据,商品还能进行关联性、TOP10、采购情况等分析,大家依据自己的网站实际情况进行分析。当然,电商平台除了商品分析,还有订单数据、用户行为等分析,有空再一起探讨!