A. 大数据的应用场景都有啥
大数据应用场景有城市管理,电信,金融
电视
数字轿配化医疗,石油化工,农林水务,工业自动化,公共安全,侦查,定位,监控灶凳,评估,电子支付,风险控制,交易,订单,跟踪,识别,消防,定位,调度,设备,安全,节能。
物流行业 生隐帆旅物医学 体育 娱乐 城市管理 安全领域 智能家居 金融行业
B. 大数据的应用场景有哪些
可以利用大数据实现智能交通、环保监测、城市规划和智能安防。
车辆监控,车辆调度,通过流量分析,进行公交线路调整,通过大数据分析预测路段车辆拥堵时间,制定缓解交通拥堵方案,通过一卡通全国联网,实施一卡走天下,记录用户所有行为轨迹。
大数据可以帮助我们训练球队,决定投拍哪种题材的影视作品,以及预测比赛结果。
通过用户关注的歌曲、视频等信息做精准推送,包括使用手机过程中被推送到眼前的广告都是精准投放的结果,每个用户看到的广告可能都是不同的。
C. 什么是大数据分析 主要应用于哪些行业以制造业为例
大数据作为IT行业最流行的词汇,围绕大数据的商业价值的使用,随之而来的数据仓库、数据安全、数据分析、数据挖掘等,逐渐成为业界所追求的利润焦点。随着大数据时代的到来,大数据分析也应运而生。
1.大数据分析主要应用于哪些行业?
制造业: 利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。
金融业: 大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。
汽车行业: 利用大数据和物联网技术的无人驾驶汽车,在不远的未来将走入我们的日常生活。
互联网行业: 借助于大数据技术分析用户行为,进行商品推荐和针对性广告投放。
餐饮行业: 利用大数据实现餐饮O2O模式,彻底改变传统餐饮经营方式。
2.大数据分析师就业前景如何?
从20世纪90年代起,欧美国家开始大量培养数据分析师,直到现在,对数据分析师的需求仍然长盛不衰,而且还有扩展之势。
根据美国劳工部预测,到2018年,数据分析师的需求量将增长20%。就算你不是数据分析师,但数据分析技能也是未来必不可少的工作技能之一。在数据分析行业发展成熟的国家,90%的市场决策和经营决策都是通过数据分析研究确定的。
3.关于大数据分析具体含义?
1、数据分析可以让人们对数据产生更加优质的诠释,而具有预知意义的分析可以让分析员根据可视化分析和数据分析后的结果做出一些预测性的推断。
2、大数据的分析与存储和数据的管理是一些数据分析层面的最佳实践。通过按部就班的流程和工具对数据进行分析可以保证一个预先定义好的高质量的分析结果。
3、不管使用者是数据分析领域中的专家,还是普通的用户,可作为数据分析工具的始终只能是数据可视化。可视化可以直观的展示数据,让数据自己表达,让客户得到理想的结果。
什么是大数据分析 主要应用于哪些行业?中琛魔方大数据平台指出大数据的价值,远远不止于此,大数据针对各行各业的渗透,大大推动了社会生产和生活,未来必将产生重大而深远的影响。
我们可以看看亿信华辰关于制造业的案例,
某电建集团主要从事国内外高速公路、市政、铁路、轨道交通、桥梁、隧 道、城市综合体开发、机场、港口、航道、地下综合管廊以及生态水环境治理、海绵 城市建设、环境保护等项目投资、建设、运营等,为客户提供投资融资、咨询规划、 设计建造、管理运营一揽子解决方案和集成式、一体化服务。成立以来,投资建设了 一大批体量大、强度高、领域宽的基础设施及环保项目。
该公司的数据化建设,或将成为新型基础设施建设的一个缩影。
项目背景 数字经济时代,数据资源已经成为企业的核心资源和核心竞争力,各类企业信息化建设的重心正从 IT(信息技术) 向 DT(数据技术) 转化,未来信息化建设的重心将是如何对组织内外部的数据进行深入、多维、实时的挖掘和分析,以满足决策层的需求,推动信息化向更高层面进化,构筑公司数字经济时代的新优势。目前,由于各级各部门大量的时间用在内外部各种繁杂的报表填报、汇总、统计和分析上,同时各级领导有对公司或者所辖单位的整体经营情况仍旧通过传统的汇报、传统的报表等了解,缺乏直观和可视化系统支撑决策分析,主要存在问题如下:1、数据孤岛严重各级各部门数据无法有效共享,跨部门跨层级的数据采集、共享和分析利用困难。2、数据采集方式落后数据采集仍旧采用传统 EXCEL 方式进行,缺乏自下而上的数据采集、数据审核、数据报送、汇总分析的数据采集平台支撑,导致数据源分散、数据标准不统一、数据质量难以保证、数据采集效率低下。3、缺乏统一的决策经营指标体系和数据资源统一管理机制导致数据资源不能有效利用,价值无法充分发挥,无法为各级领导决策提供有效支持。
建设内容 为彻底解决以上问题,根据需求和数据资产类项目建设方式,系统实现按照“指标资源整理-应用场景展现设计--数据获取-指标资源池-页面实现-决策门户 ”的方式设计。即根据梳理的指标体系应用场景需要确定设计展现界面展现内容,根据展现内容确定指标体系,根据指标体系来并收集相关数据。
1、搭建智能填报系统 梳理指标体系,构建决策指标和主题指标,明确指标类型,指标数据来源,各指标输出口径:是否填报、填报维度与对象、填报周期等等。实现公司各级各部门自下而上决策数据填报、数据审核、 数据报送、汇总查询、数据补录等全过程网络化数据采集的需要。
2、构建经营决策指标体系构建公司经营决策指标体系。收集数据分析需求,分析汇总形成公司市场、经营、履约、运营、项目等生产经营关键指标和相关数据分析主题、指标,形成指标 资源池,实现决策数据的体系化、指标化和模型化。
3、决策指标体系建设根据某电建集团提供数据的内容和主要特征,将决策指标体系的指标分为运营指标、经营指标、整体指标、市场指标、履约指标五类一级指标。每类一级指标又分别由若干个二级指标组成。
4、建设决策支持系统通过亿信BI工具,基于报表采集的数据和相关信息系统积累的数据, 初步构建管理驾驶舱,满足面向公司决策层和部门领导的数据分析,可视化图表化辅助领导管理决策,并集成电建通APP应用,实现决策移动化。
5、搭建自助式BI通过豌豆BI工具搭建自助式 BI。为市场营销、建设管理、资产运营、财务管理等部门有自助探索数据分析的业务人员提供自助式可视化分析工具。
价值体现 在合作中,亿信华辰根据当前数据分析应用的诉求,帮助该电建集团建设决策整体指标、市场指标、履约指标、运营指标五个模块,提供了从数据采集、数据汇总到指标口径定义、指标建模、指标数据落地和数据可视化分析于一体的完整的解决方案。决策管理平台以业务分析平台为基础,以更核心的指标、更直观的展现方式实现数据的分析与监控,支撑领导层的管理决策。主要包括管理驾驶舱、项目看板专题、市场专题、经营专题、履约专题、运营专题等场景。使数据资源得到充分利用,最大程度的发挥数据价值。
D. 大数据处理在实际生活中有哪些应用
现在越来越多的行业和技术领域需要用到大数据分析处理系统。说到大数据处理,首先我们来好好了解一下大数据处理流程。
1.数据采集,搭建数据仓库,数据采集就是把数据通过前端埋点,接口日志调用流数据,数据库抓取,客户自己上传数据,把这些信息基础数据把各种维度保存起来,感觉有些数据没用(刚开始做只想着功能,有些数据没采集, 后来被老大训了一顿)。
2.数据清洗/预处理:就是把收到数据简单处理,比如把ip转换成地址,过滤掉脏数据等。
3.有了数据之后就可以对数据进行加工处理,数据处理的方式很多,总体分为离线处理,实时处理,离线处理就是每天定时处理,常用的有阿里的maxComputer,hive,MapRece,离线处理主要用storm,spark,hadoop,通过一些数据处理框架,可以吧数据计算成各种KPI,在这里需要注意一下,不要只想着功能,主要是把各种数据维度建起来,基本数据做全,还要可复用,后期就可以把各种kpi随意组合展示出来。
4.数据展现,数据做出来没用,要可视化,做到MVP,就是快速做出来一个效果,不合适及时调整,这点有点类似于Scrum敏捷开发,数据展示的可以用datav,神策等,前端好的可以忽略,自己来画页面。
大数据处理在各行业的渗透越来越深入,例如金融行业需要使用大数据系统结合 VaR(value at risk) 或者机器学习方案进行信贷风控,零售、餐饮行业需要大数据系统实现辅助销售决策,各种 IOT 场景需要大数据系统持续聚合和分析时序数据,各大科技公司需要建立大数据分析中台等等。
E. 大数据具体是做什么有哪些应用
大数据即海量的数据,一般至少要达到TB级别才能算得上大数据,相比于传统的企业内数据,大数据的内容和结构要更加多样化,数值、文本、视频、语音、图像、文档、XML、HTML等都可以作为大数据的内容。
2. 政府行业在大数据分析部分包括质检部门、公安部门、气象部门、医疗部门等,质检部门包括对商品生产、加工、物流、贸易、消费全过程的信息进行采集、验证、检查,保证食品物品安全;气象部门通过构建大气运动规律评估模型、气象变化关联性分析等路径,精准地预测气象变化,寻找最佳的解决方案,规划应急、救灾工作。
3. 金融行业的大数据分析多应用于银行、证券、保险等细分领域,在大数据分析方面结合多种渠道数据进行分析,客户在社交媒体上的行为数据、在网站上消费的交易数据、客户办理业务的预留数据,结合客户年龄、资产规模、消费偏好等对客户群进行精准定位,分析其在金融业的需求等。
F. 大数据可视化应用于哪些场景
1.大数据可视化提高了效率
用于数据统计分析的大数据可视化一般用于政府部门和公司的经济活动分析,包括财务报表分析、供应链管理分析、营销制造分析、客户关系管理分析等。它将企业运营产生的所有有用数据信息集中在一个系统软件中,可用于商业智能、政府部门管理决策、公共服务、网络营销等行业。
2.大数据可视化支持科学研究
航天是大数据可视化应用最早、最完善、成果最多的行业。航天要探索的是比地球极限大几千倍,总输出大,规定更高的宽阔的室内空间。因此,航天互联网大数据不仅具有一般互联网大数据的特点,还规定了销售价格和高使用价值。能维持航天测量研制、测控机械设备的运行;航天指挥员作战管理系统的模拟演习和作战评估:航天作战指挥官显示信息来操作航天飞机数据统计分析和情况监测。
3.大数据可视化产生竞争优势
工业园区按照大数据可视化进行管理,可以从工业园区总体规划、管网运行、能耗监控、工业园区交通出行、智能安全管理方式、工业园区资源优化配置等几个方面保持平时的运行检测和和谐管理方式;进而全面提升工业园区自主创新、服务项目和管理水平,提升工业园区产业结构和企业竞争力。
关于大数据可视化应用于哪些场景,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
G. 大数据可以应用在哪些方面
可以应用在云计算方面。
大数据具体的应用:
1、洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。
2、google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。
3、统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。
4、麻省理工学院利用手机定位数据和交通数据建立城市规划。
5、梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
6、医疗行业早就遇到了海量数据和非结构化数据的挑战,而近年来很多国家都在积极推进医疗信息化发展,这使得很多医疗机构有资金来做大数据分析。
7、及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元。
8、为成千上万的快递车辆规划实时交通路线,躲避拥堵。
9、分析所有SKU,以利润最大化为目标来定价和清理库存。
10、根据客户的购买习惯,为其推送他可能感兴趣的优惠信息。
大数据的用处:
1、与云计算的深度结合。大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。
自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。
2、科学理论的突破。随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技术革命。可能会改变数据世界里的很多算法和基础理论,实现科学技术上的突破。
网络--大数据