导航:首页 > 数据处理 > 统计学如何对数据分区间

统计学如何对数据分区间

发布时间:2023-06-16 00:45:04

A. 请问如何帮excel的数据划分所处的百分位区间,并为其打分

C2公式:

=ROUNDUP(RANK(B2,$B$2:$B$21,1)/COUNT($B$2:$B$21)/0.2,0)

下拉

F2公式:

=ROUNDUP(RANK(E2,$E$2:$E$21)/COUNT($E$2:$E$21)/0.2,0)

下拉

效果见图:

B. 如何在excel中进行数据分段统计

1、电脑打开Excel。

C. 如何分析数据之间的分布类型

分析数据之间的分布类型的方法:

首先根据样本点特征判断是离散型还是连续型。

离散型分布常用的有二项分布,泊松分布,离散均匀分布,几何分布,超几何分布等等。可以根据直方图判断大概的分布类型,然后估计相应的分布参数,最后用goodness of fit检验。

连续型分布常用的有正态分布,t-分布,F-分布,卡方分布,指数分布,Gamma-分布,Beta-分布等等。同样根据直方图判断大概的分布类型,然后估计相应的分布参数。检验部分可用KS检验(Kolmogorov-Smirnov检验)。

(3)统计学如何对数据分区间扩展阅读:

统计学常用方法:

一、描述统计

描述统计是通过图表或数学方法,对数据资料进行整理、分析,并对数据的分布状态、数字特征和随机变量之间关系进行估计和描述的方法。描述统计分为集中趋势分析和离中趋势分析和相关分析三大部分。

集中趋势分析:集中趋势分析主要靠平均数、中数、众数等统计指标来表示数据的集中趋势。例如被试的平均成绩多少?是正偏分布还是负偏分布?

离中趋势分析:离中趋势分析主要靠全距、四分差、平均差、方差(协方差:用来度量两个随机变量关系的统计量)、标准差等统计指标来研究数据的离中趋势。

相关分析:相关分析探讨数据之间是否具有统计学上的关联性。

推论统计:

推论统计是统计学乃至于心理统计学中较为年轻的一部分内容。它以统计结果为依据,来证明或推翻某个命题。

正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W检验、动差法。

二、假设检验

1、参数检验

参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。

1)U验 :使用条件:当样本含量n较大时,样本值符合正态分布。

2)T检验 使用条件:当样本含量n较小时,样本值符合正态分布。

2、非参数检验

非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。

适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。

A、虽然是连续数据,但总体分布形态未知或者非正态;

B、体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下;

主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。

三、信度分析

介绍:信度(Reliability)即可靠性,它是指采用同样的方法对同一对象重复测量时所得结果的一致性程度。信度指标多以相关系数表示,大致可分为三类:稳定系数(跨时间的一致性),等值系数(跨形式的一致性)和内在一致性系数(跨项目的一致性)。信度分析的方法主要有以下四种:重测信度法、复本信度法、折半信度法、α信度系数法。

四、相关分析

研究现象之间是否存在某种依存关系,对具体有依存关系的现象探讨相关方向及相关程度。

1、单相关: 两个因素之间的相关关系叫单相关,即研究时只涉及一个自变量和一个因变量;

2、复相关 :三个或三个以上因素的相关关系叫复相关,即研究时涉及两个或两个以上的自变量和因变量相关;

3、偏相关:在某一现象与多种现象相关的场合,当假定其他变量不变时,其中两个变量之间的相关关系称为偏相关。

五、方差分析

使用条件:各样本须是相互独立的随机样本;各样本来自正态分布总体;各总体方差相等。

六、回归分析

1、一元线性回归分析:只有一个自变量X与因变量Y有关,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布。

2、多元线性回归分析

使用条件:分析多个自变量与因变量Y的关系,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布 。

D. 如何从一组数据确定其分布范围

将未知量Z对应的列上的数 与 行所对应的数字 结合 查表定位

例如 要查Z=1.96的标准正态分布表

首先 在Z下面对应的数找到1.9

然后 在Z右边的行中找到6

这两个数所对应的值为 0.9750 即为所查的值

(4)统计学如何对数据分区间扩展阅读:

标准正态分布一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。期望值μ=0,即曲线图象对称轴为Y轴,标准差σ=1条件下的正态分布,记为N(0,1)。

标准正态分布又称为u分布,是以0为均数、以1为标准差的正态分布,记为N(0,1)。

标准正态分布曲线下面积分布规律是:在-1.96~+1.96范围内曲线下的面积等于0.9500,在-2.58~+2.58范围内曲线下面积为0.9900。统计学家还制定了一张统计用表(自由度为∞时),借助该表就可以估计出某些特殊u1和u2值范围内的曲线下面积。

密度函数关于平均值对称

平均值与它的众数(statistical mode)以及中位数(median)同一数值。

函数曲线下68.268949%的面积在平均数左右的一个标准差范围内。

95.449974%的面积在平均数左右两个标准差的范围内。

99.730020%的面积在平均数左右三个标准差的范围内。

99.993666%的面积在平均数左右四个标准差的范围内。

函数曲线的反曲点(inflection point)为离平均数一个标准差距离的位置。

阅读全文

与统计学如何对数据分区间相关的资料

热点内容
哪里找spss数据 浏览:345
申请的代理怎么注销 浏览:681
哪些产品有祛斑的效果 浏览:445
美国农业市场怎么样 浏览:346
换机联系方式怎么数据迁移 浏览:578
怎么注册一个品牌产品 浏览:262
抗衰老洁面产品的共性有哪些 浏览:513
北讯怎么交易不了啊 浏览:753
多道程序环境什么意思 浏览:32
有哪些奇葩的自热产品 浏览:536
有什么净水产品 浏览:474
做代理入股需要注意什么 浏览:932
什么样的数据是爆款视频 浏览:204
泰国宵夜市场有什么 浏览:592
如何核实学生餐卡的信息 浏览:975
数据库系统为什么不属于系统程序 浏览:865
白银人才市场在什么位置 浏览:500
东莞有哪些出口越南产品 浏览:289
如何开发海产品和农产品 浏览:429
c盘哪些数据可以删 浏览:617