A. 大数据技术如何在农业中运用
根据目前农业大数据的主要来源,可以将其应用领域归纳为以下几个方面:
(1)农业生产过程管理方面应用
运用大数据的先进技术对农业各主要生产领域在生产过程中采集的大量数据进行分析处理,进而提供“精准化”的农资配方、“智慧化”的管理决策和设施控制,达到农业增产、农民增收的目的。
(2)农业资源管理方面应用
农业资源除了土地、水等自然资源之外,还包括各种农业生物资源和农业生产资料。我国虽然地大物博,但可以进行农业生产的资源已越来越少。从目前农业基础实际状况来看,有必要运用物联网、大数据等先进技术对农业资源进一步优化配置、合理开发,从而实现农业的高产优质和节能高效。
(3)农业生态环境管理方面应用
农业生态环境具体包括土壤、大气、水质、气象、污染、灾害等,需要对这些农业环境影响因子实现全而监测、精准化管理。
(4)农产品和食品安全管理方面应用
农产品安全管理涉及产地环境、产前产中产后、产业链管理、储藏加工、市场流通、物流、供应链与溯源系统等食品链的各个环节,通过对农产品质量安全监管信息的分析处理,实现食品安全风险的预警及质量安全突发事件的应急管理。
(5)农业装备与设施监控方面应用
可以提供农业装备和设施在工作运作情况下状态的监控、远程诊断以及服务调度等方面的智能化管理和应用。
(6) 提供各种农业科研活动产生的大数据应用
农业科研产生的大数据有包括空间与地面的遥感数据,还有如基因图谱、大规模测序、农业基因组数据、大分子与药物设计等大量的生物实验数据:利用科研试验大数据的分析,能够更好地指导农业生产和生活。
B. 农业大数据怎么玩
农业大数据怎么玩?中国民企在行动
科技正在以大数据的形式向农业领域渗透,行业整合成为中国农业生产方式变革的重要力量。决策者多次提出的“让农民成为令人羡慕职业”愿景,在科技的武装下正在接近实现。
在农业4.0时代前夜,中国农业生产的三要素已经悄然改变。农民面朝黄土背朝天的传统形象已被抛弃,科技的力量已使农村劳动力成为“网络新农人”。他们手中的农业大数据平台新工具,已经可以随时监测到土壤、天气、农作物等数据;而越来越多的土地流转,也赋予他们更大的规模效益。
中国农科院农发所研究员胡定寰曾向经济观察报记者描述了他对中国未来农业生产方式的构想。他认为未来中国的农业生产者应该是有技术的新农民,甚至是大学毕业生来经营适度规模的家庭农场。
市场主体已经开始意识到这一点。相对于国外,中国农业公司很多,但是依靠科技手段提供大数据的龙头农业公司却很少。这也是掣肘互联网科技和传统农业相结合的因素。曾是美国航空航天局(NASA)数据科学家的张弓试图改变这一现状,2015年他离开硅谷,带回了科学技术和大数据解决方案,也带回了在空间、气象和农业领域十分活跃的多位中国科学家。
张弓现在的身份是北京佳格天地科技有限公司创始人兼CEO。在美国,他从事卫星和气象大数据在农业和生态领域的应用,参与了美国农业部和美国森林局以及商业机构的重要项目,多项技术创新成果被应用于NASA地球信息共享系统。
张弓接受经济观察报采访时说,随着中国人口结构的变化以及农业的快速发展,农业正在发生深刻的变革,时下农业大数据的发展正当其时。
如果说留给大众印象深刻的是50年代大批留美科学家回国,21世纪的海外人才回国潮正在影响着中国经济结构变革。张弓就是这轮“现象级”中国留学人才回流中的一员。
佳格开始对接中国的农业公司,为农业生产提供技术领先的农业大数据平台。作为中国为数不多的农业大数据公司之一,佳格已经获得A轮融资6000万元,其最近的动态是,顺利与现代农业领先企业东方集团签署战略合作协议。
民企发力
当人们谈论大数据时,或许首先想到的并不是农业。作为高风险行业,农业生产面临天气、种植等太多不确定性。而作为最古老的生产形态,农业生产更是远落后于现代工业、服务业的社会产值。但是,随着越来越多的科技被用到农业领域,农业生产的高附加值已经逐渐显露。
城镇化、农村劳动力外流,已经让传统意义上农民已经开始主动或被动离开土地。根据此前农业部统计,截至2016年底,二轮承包地经营权流转面积达到4.7亿亩,占比约35.1%,现在2.3亿农户中有7000万农户已经不再直接经营其承包的全部或部分土地。
规模化和规范化的农业生产需要更多的技术支撑,大数据农业公司越来越有市场,走在前列的中国民营企业已经嗅到了这一商机。佳格此时开始登上时代的舞台。张弓告诉经济观察报记者,佳格的核心服务是通过提供作物大数据、气象预测以及病虫害预警服务,实现中国农业从传统“看天吃饭”的经验模式到“知天而作”的现代数据农业模式的转变。
农业大数据公司是服务农业公司的公司。张弓介绍:“具体来说,佳格可以为农业企业解决的痛点包括以气象、遥感和地面数据为基础的农业信息系统,比如给用户提供作物长势监测,结合地块级气象服务和病虫害预警、智能化灌溉植保,有效提升农作物的种植效率和精细化管理水平;另一类是农产品的评估需求,包括农业种植,农产品贸易和金融体系服务。”
这一次,佳格选中了以现代农业产业为主营业务的上市公司——东方集团,后者旗下的子公司东方粮仓已建立了从育种到餐桌的全产业链经营管理商业模式。2009年成立的东方粮仓先后在黑龙江省五常、方正、肇源这3个粮食主产区投资兴建了3个年综合加工能力为30万吨的现代化稻谷精深加工园区,并在五常核心产区流转13000亩优质水稻田。其与五常市政府合作建设的五常市农业高科技示范园区,已成为国内一流的现代农业示范园区。
与欧洲、美国大农业相比,中国人均耕地少、土地分散,这对农业数据收集造成很大困难。此外中国农业还存在大数据人才匮乏、大数据共享度低等困扰。农业部信息中心主任王小兵建议,中国应该加快构建数据资源体系,解决农业数据匮乏问题。
东方集团股份有限公司董事长孙明涛告诉经济观察报记者:“中国农业还缺乏一些大数据,农产品的市场行情每时每刻都在变化,在价格变化中吃亏的可能更多的是种地的人,他们从种植到收获,包括最后相关的消费数据都是极其缺乏的,所以需要一种方式能够快速收集和分析这些数据。”
孙明涛认为,不管是通过气象、气候数据,还是其他卫星得到的播种面积等相关数据,是能够有效解决生产这端数据供给的。
事实上,即使正在走向规模化经营,中国农业生产一定程度上也面临着“靠天吃饭”的困局。甚至在中国农业保险赔付率不高的现状下,一旦遇到暴雪、强降水等天灾,尤其是设施农业经营者很容易难以收回成本,更不用谈当年盈利了。根据经济观察报记者采访,2017年底安徽省雪灾时,一家投资上千万的合作社受灾严重,而按照当地保险公司规定,仅依据其对合作社核定损失额的40%进行赔付。
从防范风险、降低损失的角度来讲,大数据公司的出现解决了这两点的矛盾。张弓的独特经历也使得公司能够利用中、美、欧等数十颗卫星和无人机实时采集地面和气象数据,整合土壤、地块、作物、农资等全方位信息。
张弓介绍,这些信息通过拥有自主知识产权的图像解析和数据分析算法,为现代农业产业提供全产业链数据支持和管理服务,提高农业管理的科技化水平和精细化管理能力。此外,佳格已经可以做到进行产值预判,从金融和贸易的角度,服务场内场外期货公司、贸易公司。
农业4.0前夜
毫无疑问,中国农业生产正处于巨大变革之中。正如信息化和工业化的融合带来了工业4.0时代,这片土地上的互联网数据和传统农业生产碰撞,正将中国的农业带向4.0时代。农业4.0从2015年开始备受关注,这一年11月,《农村深化改革实施方案》公布,明确提出到2020年农业科技创新体系更加健全的目标。
农业部课题组曾对六省1072农户数据进行调研分析,结果表明,信息化对农户农业经营收入有重要影响。查询农业信息的农户比不查询信息的农户家庭农业经营收入要提高45.8%;使用过农业信息技术的农户比未使用的农户收入高14.3%。
这些数据仅仅是针对分散农户做的信息技术调查。对于规模化生产者运用大数据科技手段后增收额的变化,官方尚没有相关的数据,但这一改变生产方式的手段,对于农业增收的影响可想而知。
政府层面推动的现代农业4.0项目的代表是北京市大兴区的500亩西红柿,其中一个重要温室大棚根据需要自动调整光线,西红柿需要快速生长时光线是直射的,而需要慢慢生长时则调整到斜射的角度。由于物联网技术的运用,这些西红柿的生长可以实现全程可追溯。
专业的农业公司所面对的生产规模远非500亩。仅仅东方集团的子公司东方粮仓在黑龙江省五常市就有13000亩优质水稻田。
孙明涛告诉经济观察报:“与佳格合作,就是要把科技引入农业,提高农业产量,降本增效,提升产业化水平;同时,双方共同探索出一套成功的模式,激发行业内更多创新力,共同促进农业产业升级。”
虽然与自带话题的BAT等传统互联网公司相比,大数据公司显得有些低调,但却在悄无声息中消融行业边界。佳格就是这样,作为一家通过卫星和气象大数据服务于农业、环境、金融等行业的大数据应用公司,佳格已经开始将前沿互联网大数据融入到传统农业中来。从技术本身来看,这家公司也是中国第一家将目标智能识别技术和机器学习技术应用于高分辨率遥感影像领域、并率先实现商业化应用的公司。
对于未来的发展,张弓告诉经济观察报,佳格首先是从农业相关领域切入,做好农业种植板块,得到种植经验积累之后再逐渐向上下游推进。佳格不仅是农业大数据,更是以空间数据为核心。佳格在基础技术平台上最主要的应用除了农业,还有金融、生态环保,并以这几个应用为核心逐步拓展其他相关行业。
C. 农业大数据展望 六大领域数据亟待推广
农业大数据展望:六大领域数据亟待推广
随着农业的发展尤其是农村电商的发展,农业上下游的农资销售、农业生产、农产品流通数据以及与农业关联的土地流转、气象、土壤、水文等数据,均获得大规模积累沉淀,这些大数据将成为农业决策的“大脑”。
继农村电商后,农业大数据获得决策层关注。
在近期国务院印发的《促进大数据发展行动纲要》中,要求推进各地区、各行业、各领域涉农数据资源的共享开放,加快农业大数据关键技术研发,推动农业资源要素数据共享。商务部等三部委印发的《推进农业电子商务发展行动计划》则强调,将移动互联网、云计算、大数据、物联网等新一代信息技术贯穿到农业电子商务的各领域各环节,切实增强自主创新能力。
21世纪宏观研究院认为,随着农业的发展尤其是农村电商的发展,农业上下游的农资销售、农业生产、农产品流通数据以及与农业关联的土地流转、气象、土壤、水文等数据,均获得大规模积累沉淀,这些大数据将成为农业决策的“大脑”,纾解当前农业产业链因信息不对称产生的痛点,从而驱动农业向精准化、网络化、智能化转变。
六大领域农业大数据亟待推广
当前,中国农业正处在以小农经营为主向规模化、机械化、集约化过渡的阶段。由于粗放生产、分散经营和农业自身的季节性、地域性特征,信息不对称,成为贯通农业产业链的共性问题。当前农业产业链令人头疼的四大痛点问题,根源之一往往在于信息的缺失:
一是种不好。种植、养殖的人力物力消耗大,农产品质量相对不高。这大多与农业经营者对种养技术和对病虫害、疫情信息把握不足有关系,也跟人力成本上升、使用假冒伪劣的农资产品有关;
二是销不出。农产品滞销、卖难问题多地频发,这往往由于农业经营者对同类产品生产数据估计不足,盲目生产而造成集中上市,另一方面则是消费者对农产品质量缺乏足够的信心;
三是地难租。扩大生产规模租不到地,这既与地块分散、资金短缺有关,又与缺少土地流转信息渠道相关;
四是钱难借。除了抵押物,农业经营者难以提供充分的信用数据,因而往往难以借到钱,这也限制其更新生产设备、扩大生产规模。
上述四大痛点问题,涉及到农业经营者与政府、上游的农资企业、下游的消费者、金融机构等多个主体之间的信息对接。21世纪宏观研究院注意到,在打破“数字鸿沟”方面,国内已有不少机构、企业进行了初步探索。依据目前的探索,至少六大领域的大数据将发挥作用:
其一,生态环境数据,包括气象、水文、土壤和病虫害、动物疫情数据。这些数据是农业日常经营调整农业用水、农业产品投入的主要依据,准确掌握这些数据将有助于做到精准种植、养殖,减少资源浪费和成本投入。
其二,农业技术及农资流通数据。掌握农业技术能保障农产品高效、丰产,而基于农资流通数据的分析,则为农业经营者选择农资产品提供判断依据。种子、种苗的流通数据,亦可判断某个品类农产品的生产规模,为调整规模的依据。
其三,农产品价格与农产品流通数据。生产规模的调节、生产品类的调整,必须要事前获知农产品价格和各主产区的产销情况。另外,通过B2B、B2C电子商务平台促使农产品供求信息对接,能拓展销售市场,提高农产品价格。
其四,土地流转数据。通过土地流转供求双方信息的对接,促使流转更高效率,减少一方撂荒、一方找地的情况出现。
其五,农产品质量可追溯数据。通过上述的农资使用数据、生产流通数据的整合,可构建出从农场到餐桌的可追溯数据,以消除消费者对农产品质量的疑虑,提高农产品的购买率。
其六,农业经营者征信数据。前述数据可纳入银行、农村信用社以及保险机构的征信系统,作为发放贷款、设置农业保险的信用依据,以此推动金融和农业的融合。
21世纪宏观研究院认为,随着上述六大领域农业大数据的推广应用,将降低交易成本,提高生产效率及产品品质,提升农产品交易效率。从本质上看,则是促进粗放分散式经营和规模化、集约化经营向精准化、智能化经营的转变。
涉农部门需多方合力
围绕着大数据与农业的融合,农业链条上的不同产业或迎来生态的转变。
以大数据驱动下的单一农场为例,经营者将更多使用绿色、高效的农资产品,早已水涨船高的简单劳动力将被替换,而适应大数据的知识型、技术型“新农业经营者”将有更多的用武之地。如适应“水肥一体化”的发展,水溶性肥料、液体肥将获得发展,而此前大行其道的普通化学肥料将因为颗粒不能完全溶解而堵塞滴灌设备,则可能遭到市场的淘汰。
不过,需要指出的是,农业大数据技术多数还处在起步阶段,未能做到足够的智能化;承载农业大数据的农业物联网、智能监测设备等售价过高;另外,由于推广力度尚不大,农业经营者尚未有足够认识。
21世纪宏观研究院认为,当前无论是“电商下乡”还是大数据产业,都处于初级阶段。依托大数据技术广泛推动农业发展,在短时间内并不现实。农业大数据市场还是一个充满机遇、有待开发的市场。为此,需要政府部门、涉农企业、大数据企业和农业生产经营主体多方合力,共同推进农业大数据的示范与推广。
对政府而言,首先应当推动大数据的基础设施建设。这包含两个方面,一是要大力推动通信基站、电信宽带的建设,为各类农业经营者“触网”、联通大数据提供基础;二是要尽可能开发政府掌握的各类涉农大数据,包括天气数据、农业用地的各类元素含量数据、病虫害和动物疫情的监测数据,以供农资企业合理调配生产,并制定针对各区域各品种的农资解决方案。
其次,政府需要提供政策支持,引导涉农企业、大数据企业构建以品种或区域为中心的农业大数据平台。让农业大数据服务成为企业的直接盈利项目或配套的增值服务。
此外,还需要引导农业经营者主动向大数据农业转型,对优秀案例做示范推广,引导农业经营者学习“云上的示范田”。
以上是小编为大家分享的关于农业大数据展望 六大领域数据亟待推广的相关内容,更多信息可以关注环球青藤分享更多干货
D. 人工智能 大数据 如何作用在农业发展
数字农业应运而生 前景如何?
在数字经济快速发展的背景下,“数字农业”应运而生。我们应该怎样理解 “数字农业”?我国数字农业前景如何?数字农业又能如何助推传统农业转型升级?
2019年3月中国农产品进出口金额统计分析
在进口金额方面,数据显示,2018年2-4季度中国农产品进口金额逐渐下降,2019年3月中国农产品进口金额为10595.8百万美元,同比下降0.1%。
在出口金额方面,2018年1-4季度中国农产品出口金额呈增长趋势,其中,2018年2季度中国农产品出口金额增幅最大,相比1季度增长11.45%。2019年3月中国农产品出口金额为16482.3百万美元,同比增长12.3%。
我国传统农业发展痛点分析
1、需求侧——日益增长的农产品需求与国内传统的农业生产矛盾凸显,对外依存度高。随着收入增加,消费者将从满足基本的生存需求向品质更高的生活方式进行转换,进而摄入更多的肉类、蛋奶类制品以满足能量需要,对粮食等农产品的需求量逐步提高。不仅如此,随着我国居民收入的持续提升,居民对于高品质的农产品的需求也在持续提升,我国农产品生产的矛盾也逐渐将由总量的供给不足转变为产品结构不匹配。
2、供给侧——小规模分散经营,生产成本高,盈利能力弱。我国农业总产值虽常年居于世界首位,但由于长期存在的家庭联产承包责任制下的分散经营以及高度分散的种植、养殖现状,导致农业技术水平低,无论是机械化水平还是在生化技术水平,均落后于发达国家。同时,我国农业产业化程度较低,价值链短,附加值低,导致农业盈利薄弱,人均农业增加值远低于发达国家。
3、服务侧——融资困难、非标准化、信息不对称。融资环节复杂,成本高,时效性差。“三农”贷款难问题突出,民间借贷现象加大农村金融风险。农业的标准化生产和销售体系尚未建立。农产品生产技术和流程标准不完善,农产品标准化的销售体系不健全,品牌意识普遍不高。链条冗余、信息不对称导致销售难度加大、生产端附加值低。农产品从生产到消费交易链条过长,交易成本、运输成本较高,交易的不确定性增大、损耗也较高。
数字技术如何助力传统农业转型升级?
针对传统农业面临的以上问题,物联网、大数据、人工智能将会有效助力传统农业向数字农业转型升级。
1、物联网——农业数据实时获取,奠定农业数字化基础。物联网在农业领域应用范围广泛,基于物联网的农业解决方案,通过实时收集并分析现场数据及部署指挥机制的方式,达到提升运营效率、扩大收益、降低损耗的目的。可变速率、精准农业、智能灌溉、智能温室等多种基于物联网的应用将推动农业流程改进。物联网科技可用于解决农业领域特有问题,打造基于物联网的智慧农场,实现作物质量和产量双丰收。
2、大数据——决策“数字化”,全面提升生产效率。万物互联在推动海量设备接入的同时,也将在云端生成海量数据。而挖掘这些由物联网产生的大数据中隐藏信息的方法就是利用人工智能。物联网最核心的商业价值就是将这些海量的数据进行智能化的分析、处理,从而生成基于不同商业模式的各类应用。
3、人工智能——潜力巨大,激活农业高效发展。在种植领域,人工智能有望提高粮食产量、减少资源浪费。在养殖领域中,利用人工智能可以有效降低疾病造成的损失。人工智能缩短农业研发进程。在实验室和研究中心,机器学习算法能够帮助培育更好的植物基因,创造更安全、更高效的农作物保护产品和化肥,并且开发更多的农产品。
说到数字技术助推农业发展,就不得不提到以色列。以色列天然水资源短缺、降水稀少,有三分之二的地区被定义为半干旱或干旱地区。资源匮乏迫使国家聚力提高农业效率,为挖掘大数据潜力刺激数字农业发展。
近年来,以色列越来越多的农业领域正通过热像仪、传感器、无人机、卫星图像等技术监测使得实时数据及时传达给农民,大幅提高了农民相应速度,最大限度地减少了极端天气条件下的农业损害、最大限度地提高农业产量。经过农业现代化进程,截至2016年,以色列实现了从新中国成立初期80%粮食靠进口到可以生产满足自身95%需求的转变。
更多数据请参考于前瞻产业研究院发布的《中国农业产业化市场前瞻与投资战略规划分析报告》。
E. 推动农业转型升级主要包括哪些内容
实现“1+2+3”等于6,“1×2×3”也等于6。
一二三产融合的新农业,是现代化的“第六产业”,这是现代农业的最新定位解读,它是把传统的一产延伸到二产特别是食品加工业,再扩张至物流配送等三产,并依靠信息公共平台第四产业和文化公共平台第五产业将一二三产融合起来形成综合产业,才是真正意义上的“第六产业”。
发展“第六产业”的根本目的是为了振兴农业农村,改变农业发展前景,所以要坚持以农业为主体;基本做法是通过一、二、三产业的相互融合,提升农产品附加值,提高农民收入;基本趋势是让第二、第三产业附着其上,逐步使原本作为第一产业的农业变身为综合产业。可以说,“第六产业”是发展现代农业的真谛。
“第六产业”找到了现代农业的真谛,与我国农业产业化企业的发展目的和目标不谋而合。
农业“新六产”的形态:
1、打造终端型业态。
立足农产品的开发生产与加工增值,在农产品产加销一体化的基础上,构建农产品从田头到餐桌、从初级产品到终端消费无缝对接的产业体系。以优势特色产业为基础,发展农产品初加工、精深加工、商贸物流等后续产业。以农产品加工业为骨干,向前延伸发展规模化、标准化原料基地,向后延伸发展流通业和餐饮业。以商贸物流业为引领,发展农产品订单式种养殖基地及配套的产后加工、生产服务。
2、打造体验型业态。
立足农业多种功能的挖掘与拓展,促进农业生产、农产品加工与休闲观光(垂钓)、农耕体验、文化传承、健康养老、节庆采摘、科普教育深度融合,构建集生产、生活、生态功能于一体的农业产业体系。挖掘地方特色农产品加工、传统农耕文化,引入创意元素,发展参与式、体验式、娱乐式创意农业。依托优势景观资源和乡村文化底蕴,发展吃住游购一体化的乡村旅游。
3、打造循环型业态。
立足农业废弃物和加工副产物的资源化利用,发展生态农业、绿色农业、循环农业,构建生态保护与效益并举、可持续发展的产业新体系。在农业各产业间,打造产业上下游有机关联、“资源—产品—农业废弃物—再生资源”完整的农业生物产业链,提高资源综合利用率。
4、打造智慧型业态。
立足科技进步和模式创新,发展智慧农业、农村电商等新产业新业态。利用互联网、物联网、云计算等现代信息技术,对农业生产、加工、营销全过程进行智能化控制,发展精准农业、智慧农业。利用“大数据”和“互联网+”等信息技术,发展农产品电商平台。借助创意产业的发展理念,将现代科技和人文要素融入农业生产、加工及流通领域,发展定制式创意农业。
F. 怎样才能做好农村大数据的开发,让农产品不再滞销
在这个时代,靠什么生存?靠吸引眼球、掌握用户心理、遵循市场规则。有人说,做农业太难。这句话包含两层意思:一是太累,农业经营者或从业者基本上每天要面朝黄土、背朝天,不付出点汗水,想取得收获是很难的;二是赚钱少或不赚钱,靠天吃饭的确很难,种养行业最害怕遇到天灾人祸,更害怕市场滞销。因此,很多农业经营者都在抱怨:做农业太难。
现在国家正积极倡导农村大数开发,各地方都在主动落实、积极配合,作为农村大家庭成员之一,我认为“”大数据”关键在“数”,数从哪里来、数谁来用、数怎么管,只要落实好这三位“数”,农民明友心里就有数。
同时我们还要考虑几个问题:1.品牌打造,要打造一个人格化的品牌,通过品牌来溢价;2.供应链打造,配送与物流、冷链,这是农特微商的重点;3.展示真实的自己,微信朋友圈卖的不是产品是“人”,是用户对销售者的喜欢与认可。
都说一份耕耘一份收获,可农民辛苦了种出来的产品却卖不出来,并不恩农产品质量不行,往注就出在销售渠道方面。
G. 何为农业大数据如何利用大数据
农民在实际的生产过程中每天都要做很多选择:播什么种、施什么肥、如何管理农田、病虫害如何防治等等。实际上,一套农事任务,从生产规划、种植前准备、种植期管理,到采收、销售等每一步都会极大的影响农民的生产和收益,而且它们大多数环环相扣,如果选错一步,那后果可能就是减产。所谓的农业大数据即与农民实际生产操作相对应的所有数据,从“天时、地利、人和”三方面理解:“天时”可以指实时的气象数据,降水、温度、风力、湿度等;“地利”可以指动静态的土壤数据,如土壤水分、土壤温度,作物品种信息、作物病虫害信息等;“人和”则是从人力资源给出信息,农资产品使用、农产品加工和流通渠道、农产品市场价格等等。
如何利用农业大数据?
目前,农业生产模式正在从机械化向信息化转变,以精准为特征的农业,正在让种植变得更加容易。在我国从传统农业迈向现代农业的关键时期,如何利用农业大数据呢?
首先,我们不妨先看看世界最发达的农业大国-美国,是如何利用农业大数据的?在美国,一些种业巨头公司已经意识到,面对大数据时代的来临,传统行业模式也亟待转型。如美国农用机械制造商John Deere在所有的拖拉机上都安装了传感器,将机械状况及土壤和农作物的生长情况传到MyJohnDeere.com和Farmsight服务。农户可以订阅分析结果,了解诸如何时订购备件、何时播种之类的信息。
另一位美国种业巨头杜邦先锋公司依托其优质种质资源与研发技术,也已先行结合农业大数据推进精准农业技术。其种子部门与农场机械制造商约翰迪尔联手,给农民提供种子和化肥方面的指导。目前,无论是迪尔(Deer)公司的FramSight、孟山都(Monsanto)公司的ClimatePro或Field Scripts、先锋(Pioneer)公司的Field360,都已经是广泛使用的农业大数据系统,这些系统都与气候云(Climate Cloud)相结合,整合农民机械化农场设备的种植和产量数据,以及气象、种植区划等多样数据,可以得到较为详尽的种植决策,精准化农事生产,帮助农民提高产量和利润。