导航:首页 > 数据处理 > 数据分析哪个方面好

数据分析哪个方面好

发布时间:2023-06-14 23:45:01

A. 如何做好数据分析

数据分析有:分类分析,矩阵分析,漏斗分析,相关分析,逻辑树分析,趋势分析,行为轨迹分析,等等。 我用HR的工作来举例,说明上面这些分析要怎么做,才能得出洞见。

01) 分类分析
比如分成不同部门、不同岗位层级、不同年龄段,来分析人才流失率。比如发现某个部门流失率特别高,那么就可以去分析。

02) 矩阵分析
比如公司有价值观和能力的考核,那么可以把考核结果做出矩阵图,能力强价值匹配的员工、能力强价值不匹配的员工、能力弱价值匹配的员工、能力弱价值不匹配的员工各占多少比例,从而发现公司的人才健康度。

03) 漏斗分析
比如记录招聘数据,投递简历、通过初筛、通过一面、通过二面、通过终面、接下Offer、成功入职、通过试用期,这就是一个完整的招聘漏斗,从数据中,可以看到哪个环节还可以优化。

04) 相关分析
比如公司各个分店的人才流失率差异较大,那么可以把各个分店的员工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、员工年龄、管理人员年龄等)要素进行相关性分析,找到最能够挽留员工的关键因素。

05) 逻辑树分析
比如近期发现员工的满意度有所降低,那么就进行拆解,满意度跟薪酬、福利、职业发展、工作氛围有关,然后薪酬分为基本薪资和奖金,这样层层拆解,找出满意度各个影响因素里面的变化因素,从而得出洞见。

06) 趋势分析
比如人才流失率过去12个月的变化趋势。

07)行为轨迹分析
比如跟踪一个销售人员的行为轨迹,从入职、到开始产生业绩、到业绩快速增长、到疲惫期、到逐渐稳定。

B. 就大数据分析,学什么技术比较好呢

大数据的能量和其为企业带来的竞争力优势已经逐渐显现,现在大数据已经成为商业智能、分析和数据管理市场领域中讨论度最高的话题之一,当然也是最热门的流行语之一。此外,企业已经看到了将大数据与云计算绑定所带来的好处。云计算提供可扩展性,使得其成为大数据分析的实践之车。

对于企业而言,大数据不仅是个热门话题,更是真切的需求所在。许多企业开始着手于大数据分析项目,但是现在,越来越多的企业存储的信息量就算不是PB级,起码也有TB量级。这些企业可能希望每天能分析几次关键数据,甚至是实现实时分析,而传统BI流程对历史数据进行分析的频率是以周或月为单位的。

大数据分析用哪种技术最合适

此外,越来越多复杂查询的处理带来了各种不同的数据集,其中有可能包含来自企业资源计划(ERP)系统和客户关系管理(CRM)系统交易数据、社交媒介和地理空间数据,还有内部文档和其它格式信息等等。

要进行大数据分析,选择合适的技术是规划的第一部分,企业选择了数据库软件、分析工具以及相关的技术架构后,才可以进行下一步并开发一个真正成功的大数据平台。技术供应商处理这些需求的方式是多种多样的。许多数据库和数据仓库供应商都在关注及时处理大量复杂数据的能力。有的用列式数据存储来实现更快速的查询,有的提供内建的查询优化器,有的增加对Hadoop和MapRece这类开源技术的支持功能。

内存分析工具可能对分析处理速度的提升有所帮助,因为它能减少磁盘数据转换的需求;而数据虚拟化软件和其它实时数据集成技术可对运行中不同数据源的信息进行收集。对于垂直市场而言,现成的分析应用程序都是专门为其定制的,因为诸如电信、金融服务和网络游戏这些行业都必须处理大数据。当公司管理人员和业务经理需要查看大数据分析查询结果时,数据可视化工具可以简化其流程。

企业在在制定实施方案、对大数据基础设施进行选型之前,还需要考虑一些问题,比如数据及时性,因为并不是所有数据库都支持实时数据可用性。各种数据源需要与数据关联性和业务规则复杂度进行链接,以获得一个包含企业绩效、销售机会、客户行为、风险因素和其它业务指标的全面视图。由

C. 有哪些数据分析软件,哪个比较好

思迈特软件Smartbi 软件在国内BI 领域处于领先地位,产品广泛应用于金融、政府、制造、零售、地产等众多行业,拥有3000+行业头部客户。

判断一个大数据分析软件好不好,首先要看这个款产品的稳定性,在数据分析的过程中,稳定性非常重要,它决定了数据分析过程的质量和效率;其二、系统设计人性化,操作简单方便,合适不同客户群体;

其三、分析结果准确率高;其四、客户体验满意度,产品好不好只有客户体验满意才是好的产品。

思迈特软件Smartbi 是国内领先的BI厂商,企业级商业智能和大数据分析平台,经过多年的持续发展,整合了各行业的数据分析和决策支持的功能需求。满足最终用户在企业级报表、数据可视化分析、自助探索分析、数据挖掘建模、AI智能分析等大数据分析需求。
Smartbi是目前国内大数据分析软件的佼佼者。主打的是企业报表和自助式分析2个特点,最高可以支撑20亿数据的秒级呈现,适用于企业中的技术人员、业务人员和数据分析师,可以完全自主的进行探索式分析,软件在易用性和功能上做的都很不错,说实话,国内的BI行业由于起步较晚,能做到这个程度的确是下了一番功夫。相较于国外产品而言,Smartbi最大的优势在于Smartbi自主搭建的实施团队和服务团队,强大的服务让它成为国内首屈一指的商业智能产品。

1、智能钻取
Smartbi数据分析软件独有的智能钻取功能,只需双击鼠标,就能实现任意报表之间的穿透钻取,不管这些报表是不是来自同一分析模型,只要有数据关联就能实现秒速智能钻取。最关键的是,他不需要IT开发人员做任何预设,系统将智能匹配报表与参数传递,真正做到了报表无边界,想钻哪里就钻哪里的效果。
Smartbi数据分析软件已全面落地Smartbi智能钻取功能,为用户提供更智能、灵活又高效的数据钻取服务。

2、多维动态分析
在多维数据库中,数据是以立方体(即Cube)的形式存储的。但在企业中不同角色进行数据分析时关注的维度是不同的,那么如何才能做到让不同角色可以基于自己所关注的维度,对数据进行多角度展示和灵活动态分析呢?
Smartbi 多维分析可以直接对接多维数据库(Essbase、SSAS等),通过将多维数据集中的各个维度进行有机组合,查询出相应的数据。它提供了切片、切块、钻取以及行列互换等多种可视化操作方式,使得不同角色可基于自身所关注的维度进行灵活的数据分析,从而使用户对大量复杂数据的分析变得轻松而高效,以利于迅速做出正确的判断,辅助决策。

一般的分析报表只有一个固定的分析角度,浏览者只能被动接受,无法根据自己的需求、思维方式去做进一步分析。但在Smartbi数据分析软件上,报表浏览者能够自主决定分析角度与内容。就如当我想从销售驾驶舱中进一步分析广东门店的销售情况,可通过高效联动、智能钻取、筛选等多种方式进行切换。

多维动态分析技术的应用,让报表浏览者自主决定字段与维度组合,自主决定分析内容,从而拥有更多维的数据分析角度,更深入详细的数据分析挖掘能力。

3、无须预建模的透视分析

通过Smartbi这些工作都得到了极大的简化,采用“类Excel数据透视表”的设计,多维分析不再需要建立模型,就能够组合维度、汇总计算、切片、钻取,洞察数据。不仅如此,任何字段都可直接作为输出字段或筛选条件,轻松实现对数据的查询与探索。

数据分析软件靠不靠谱,来试试Smartbi,思迈特软件Smartbi经过多年持续自主研发,凝聚大量商业智能最佳实践经验,整合了各行业的数据分析和决策支持的功能需求。满足最终用户在企业级报表、数据可视化分析、自助探索分析、数据挖掘建模、AI智能分析等大数据分析需求。

思迈特软件Smartbi个人用户全功能模块长期免费试用
马上免费体验:Smartbi一站式大数据分析平台

D. 数据分析主要看哪方面的数据进行参考呢

通过电霸shopee数据分析软件参考平台热销产品,飙升产品,上新产品,热销店铺,新店铺这些数据进行选品和店铺优化

E. 数据分析具体包括哪些方面

1. Analytic Visualizations(可视化分析),不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。

2. Data Mining Algorithms(数据挖掘算法),可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。

3. Predictive Analytic Capabilities(预测性分析能力),数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。

4. Semantic Engines(语义引擎),我们知道由于非结构化数据的多样性带来了数据分析的新的挑战,我们需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从“文档”中智能提取信息。

5. Data Quality and Master Data Management(数据质量和数据管理),数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。

F. 数据分析师的发展方向有哪几方面

数据分析行业大火,很多小伙伴都想转行成为数据分析师,入行容易,但重要的需要确定未来的一个发展方向,不能盲目入行。下面小编给大家分享几种数据分析师的发展方向,大家可以参考一下,首先确定好自己的目标。
业务数据分析师:技能上需要会使用Excel、pythonl和SQL,因为业务数据分析师主要工作是把数据和业务结合的,用数据辅助业务增长,对于技术方面的要求一般,业务知识才是重点。
数据挖掘工程师:偏向于技术一些,需要熟练运用linux操作系统、Hadoop、HDFS、MapRece、Hive和Hbase等工具,能够进行基于Spark平台的大数据分析和机器学习应用。同时对数据挖掘的方法要求也很高,比如:技术的回归、分类和聚类分析等。
人工智能工程师:掌握机器学习、深度学习;能够熟练进行数据清洗,可以完成缺失值填补、异常值处理等;精通数据可视化,例如箱线图、动态图等;同时还必须掌握人工智能在各行业的应用场景。
以上就是小编整理的数据分析的三类职业发展,具体细分的话还有很多方向,大家可以参考招聘网站上的数据分析师的岗位要求。如果哪位小伙伴想从事数据分析相关工作,并且想要快速人们并找到合适工作的话建议从业务数据分析师入手,相对而言,技术门槛较低,对于也能够深入业务,将来也能向运营管理者方向发展。但如果本身就有一定的技术基础,比如程序员,可以从数据挖掘工程师入手,人工智能工程师的话也是可以的,不过需要更深层次的技术学习。

G. 数据分析的基本方面有哪些

1、可视化分析


大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。


2、数据挖掘算法


大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。


3、预测性分析能力


大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。


4、语义引擎


大数据分析广泛应用于网络数据挖掘,可从用户的搜索关键词、标签关键词、或其他输入语义,分析,判断用户需求,从而实现更好的用户体验和广告匹配。


5、数据质量和数据管理


大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。

阅读全文

与数据分析哪个方面好相关的资料

热点内容
我为什么选择程序猿 浏览:755
安怡为什么恢复不了原始程序 浏览:225
信息流过载是什么 浏览:222
环境实验室信息管理系统有哪些 浏览:264
新车怎么没有产品 浏览:391
永恒纪元交易密码错误限制多久 浏览:942
先练什么技术最好 浏览:730
大盘都有什么数据 浏览:477
东吴证券交易密码如何设置 浏览:757
怎么查到公司的大数据 浏览:709
短线有哪些交易模式 浏览:503
顾客反复买产品返费是什么原因 浏览:548
家庭实用新产品有哪些 浏览:251
如何做外汇交易误区 浏览:752
如何锻炼王者的技术 浏览:115
哪里能卖交易冷却的饰品 浏览:666
宝鸡第二商贸学校里边有什么技术 浏览:549
湖北怎么查打疫苗信息 浏览:62
怎么跟客户说明产品变更了什么 浏览:173
保税区会计业务代理需要哪些条件 浏览:991