‘壹’ 大数据专业主要学什么
大数据主要需要学Java基础、JavaEE核心、Hadoop生态体系、Spark生态体系等四方面知识。
Java基础包含:Java基础语法、面向对象编程、常用类和工具类、集合框架体系、异常处理机制文件和IO流、移动开户管理系统、多线程、枚举和垃圾回收、反射、JDK新特性、通讯录系统等知识;
JavaEE核心包含:前端技术、数据库、JDBC技术、服务器端技术、Maven、Spring、SpringBoot、Git等知识;
Hadoop生态体系包含:Linux、Hadoop、ZooKeeper、Hive、HBase、Phoenix、Impal、Kylin、Flume、Sqoop&DataX、Kafka、Oozie&Azkaban、Hue、智慧农业数仓分析平台等知识;
Spark生态体系包含:Scala、Spark、交通领域汽车流量监控项目、Flin等知识。
‘贰’ 从事大数据行业要掌握哪些知识
1、数学知识,数学知识是数据分析师的基础知识。对于数据分析师,了解一些描述统计相关的内容,需要有一定公式计算能力,了解常用统计模型算法。而对于数据挖掘工程师来说,各类算法也需要熟练使用,对数学的要求是最高的。
2、编程语言,对于想学大数据的朋友来说,至少需要具备一门编程语言,比如SQL、hadoop、hive查询、Python等均可。
‘叁’ 大数据专业需要学习什么样的知识
第一阶段:大数据技术入门
1大数据入门:介绍当前流行大数据技术,数据技术原理,并介绍其思想,介绍大数据技术培训课程,概要介绍。
2Linux大数据必备:介绍Lniux常见版本,VMware虚拟机安装Linux系统,虚拟机网络配置,文件基本命令操作,远程连接工具使用,用户和组创建,删除,更改和授权,文件/目录创建,删除,移动,拷贝重命名,编辑器基本使用,文件常用操作,磁盘基本管理命令,内存使用监控命令,软件安装方式,介绍LinuxShell的变量,控制,循环基本语法,LinuxCrontab定时任务使用,对Lniux基础知识,进行阶段性实战训练,这个过程需要动手操作,将理论付诸实践。
3CM&CDHHadoop的Cloudera版:包含Hadoop,HBase,Hiva,Spark,Flume等,介绍CM的安装,CDH的安装,配置,等等。
第二阶段:海量数据高级分析语言
Scala是一门多范式的编程语言,类似于java,设计的初衷是实现可伸缩的语言,并集成面向对象编程和函数式编程的多种特性,介绍其优略势,基础语句,语法和用法, 介绍Scala的函数,函数按名称调用,使用命名参数函数,函数使用可变参数,递归函数,默认参数值,高阶函数,嵌套函数,匿名函数,部分应用函数,柯里函数,闭包,需要进行动手的操作。
第三阶段:海量数据存储分布式存储
1HadoopHDFS分布式存储:HDFS是Hadoop的分布式文件存储系统,是一个高度容错性的系统,适合部署在廉价的机器上,HDFS能提供高吞吐量的数据访问,非常适合大规模数据集上的应用,介绍其的入门基础知识,深入剖析。
2HBase分布式存储:HBase-HadoopDatabase是一个高可靠性,高性能,面向列,可伸缩的分布式存储系统,利用HBase技术可在廉价PC上搭建起大规模结构化存储集群,介绍其入门的基础知识,以及设计原则,需实际操作才能熟练。
第四阶段:海量数据分析分布式计算
1HadoopMapRece分布式计算:是一种编程模型,用于打过莫数据集的并行运算。
2Hiva数据挖掘:对其进行概要性简介,数据定义,创建,修改,删除等操作。
3Spare分布式计算:Spare是类MapRece的通用并行框架。
第五阶段:考试
1技术前瞻:对全球最新的大数据技术进行简介。
2考前辅导:自主选择报考工信部考试,对通过者发放工信部大数据技能认证书。
上面的内容包含了大数据学习的所有的课程,所以,如果有想学大数据的可以从这方面下手,慢慢的了解大数据。
‘肆’ 数据分析和数据挖掘学要哪些专业知识
在学数据分析之前,我们首先要明确知识架构。一般来说,数据分析师需要的技能就是这些:需要掌握SQL数据库的基本操作,同时掌握基本的数据管理。会用Excel和SQL做基本的数据提取、分析和展示;会用脚本语言进行数据分析,Python或者R;有获取外部数据的能力加分,比如爬虫;会基本的数据可视化技能,能撰写数据报告;熟悉常用的数据挖掘算法(数据分析算法包括回归分析、决策树、分类、聚类方法等)。这些技能掌握了,就能够入门数据分析师了。
数据挖掘需要的技能:1.需要理解主流机器学习算法的原理和应用。2.需要熟悉至少一门编程语言如(Python、C、C++、Java、Delphi等)。3.需要理解数据库原理,能够熟练操作至少一种数据库(Mysql、SQL、DB2、Oracle等),能够明白MapRece的原理操作以及熟练使用Hadoop系列工具更好。
更多数据挖掘的信息,推荐咨询CDA数据分析师的课程。CDA数据分析师认证的课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。点击预约免费试听课。
‘伍’ 大数据挖掘需要学习哪些技术大数据的工作
首先
我由各种编程语言的背景——matlab,R,java,C/C++,python,网络编程等
我又一定的数学基础——高数,线代,概率论,统计学等
我又一定的算法基础——经典算法,神经网络,部分预测算法,群智能算法等
但这些目前来讲都不那么重要,但慢慢要用到
Step 1:大数据理论,方法和技术
大数据理论——啥都不说,人家问你什么是大数据时,你能够讲到别人知道什么是大数据
大数据方法——然后别人问你,那怎么实现呢?嗯,继续讲:说的是方法(就好像归并排序算法:分,并)。到目前外行人理解无障碍
大数据技术——多嘴的人继续问:用的技术。
这阶段只是基础,不涉及任何技术细节,慢慢看慢慢总结,积累对“大数据”这个词的理解。
Step 2:大数据思维
Bang~这是继Step 1量变发展而来的质变:学了那么久“大数据”,把你扔到制造业,你怎么办?
我想,这就是“学泛”的作用吧,并不是学到什么具体东西,而是学到了对待事物的思维。
----------------------------------------------------------------------
以下阶段我还没开始=_=,不好误导大家
Step 3:大数据技术基础
Step 4:大数据技术进阶
Step 5:打实战
Step 6:大融合