㈠ 数据链系统与无线数字通信系统
数据链主要采用无线传输信道,针对一些应用平台具有高机动性高灵活性的特点,综合数字化技术进行处理,具备跳频、扩频、猝发等通信方式以及加密手段,使其具有抗干扰和保密功能。
数据链系统与无线数字通信系统【1】
摘 要:本文介绍了数据链系统的基本特征,探讨了数据链与无线数字通信系统的区别与联系。
从实际应用的角度对数据链和无线数字通信系统不同的应用模式以及发挥作用进行了分析。
关键词:数据链;无线通信系统
1 数据链系统的基本特征
1.1 信息格式化
数据链一般具有一套相对完备的消息标准,对包括指挥控制、侦察监视、平台协调、联合行动等静态和动态信息的参数规定进行描述。
信息内容格式化是指固定长度或可变长度的信息编码,数据链网络成员对编码的语义具有相同的理解和解释,达到信息共享。
1.2 传输组网综合化
数据链主要采用无线传输信道,针对一些应用平台具有高机动性高灵活性的特点,综合数字化技术进行处理,具备跳频、扩频、猝发等通信方式以及加密手段,使其具有抗干扰和保密功能。
传输信息资源按照需求进行共享是数据链在组网过程中关注的重点,每个网络节点既能接收也能共享网络中其他成员节点发送出的信息,也能根据实时信息的缓急程度分配总的信息发送带宽和发送时间。
1.3 传输介质多样化
数据链一般可以采用多种传输介质和方式,能够适应各种应用平台的不同信息交换需求,既有点到点的单链路传输,也有点到多点和多点到多点的网络传输,而且网络结构和通信协议都可以具有多种形式。
数据链可采用短波通信、超短波通信、微波通信、卫星通信以及有线信道,或者是组合信道传输信息以适应应用环境和应用需求的不同。
1.4 链路对象智能化
数据链链接具有较强的数字化能力和智能化水平,链接对象担负信息的采集、加工、传递等重要功能,它们之间通过数据链形成紧密的关系,实现信息的自动化流转和处理从而较好完成任务。
紧密链接主要体现在两个层面:一是数据链的各个链接对象之间形成信息资源共享关系;二是各个链接对象内部功能单元信息的综合。
1.5 信息交换实时化
数据链实时传输信息采用多种技术设计:一是设计始终把握传输可靠性稳定性要服从于实时性原则;二是采用相对固定的网络结构和快捷的信息传输路径,而不采用繁杂的路由选择方案;三是选用高效实用的交换协议,将有限的无线信道资源优先分配传输等级高的信息;四是综合考虑信道传输特性,进行整体优化设计信号波形、通信控制协议、组网方式和消息标准等环节。
2 数据链系统与无线数字通信系统的关系
数据链的重要技术基础包括无线数字通信技术,两者不是完全相等的。
数据链一般要完成数据传送功能,同时还要对数据进行处理,提取出信息。
并且,数据链的组网方式与应用密切相关,根据情况变化应用系统可以适时地调整网络配置和模式与之匹配。
无线数字通信的主要功能仅仅是按一定的要求将数据从发端送到收端的透明传输,通常只完成承载任务,不关心所传输数据表征的信息。
2.1 与应用需求的关联程度不同
数据链网络设计是根据特定的任务,决定每个具体终端可以访问的数据、传输的消息,什么数据被中继。
数据链的网络设计方案是根据任务确定的,从预先规划的网络库中挑选一种设计配置,在初始化时加载到终端上。
数据链的组网配置直接取决于当前面临的任务、参与单元和使用区域。
数据链的实际应用直接受指挥控制关系、平台系统控制要求、信息提供方式等因素的制约,与应用的需要有着高度关联。
而无线数字通信系统的配置和应用与这些因素的关联度相对较低,相对于应用需求关系不紧。
2.2 实际使用中的目的不同
数据链用于提高指挥控制、态势感知及平台协同能力,从而实现对平台的同步控制和提高平台应用的实时性。
而无线数字通信系统则是用于提高数据传输能力,达到实现传输数据的目的,无线数字通信技术是数据链的主要技术基础之一。
2.3 信息传输要求不同
数据链传输的是应用单元所需要的实时信息,要对数据进行合理的整合、处理,提取出具有价值的信息;而无线数字通信一般是比较透明的传输,总体上是为了保证数据传输质量,对数据所包含的信息内容不作识别和处理。
另外,无线通信系统一般不考虑用户的绝对时间基准与空间位置的关系,其相对时间同步解决传输的准确性问题。
2.4 具体使用的方式方法不同
数据链直接与指挥控制系统、传感器、平台链接,可以实现“机一机”方式交换信息,而无线数字通信系统一般以“人一机一人”方式传送信息。
无线数字通信终端通常为即插即用方式,在通信网络一次性配置好后一般不作变动。
但是,数据链设备的使用针对性很强,在每次参加行动前都要根据当前的任务需求,进行比较复杂的数据链网络规划,必须使数据链网络结构和资源的规划与该次任务达到最佳匹配。
3 结束语
无线数字通信系统是解决各种用户和信息传输的普遍性问题,而数据链是有针对性地完成用户使用时的实时信息交换任务。
无线数字通信系统涉及传输信道、传输规程和信息交换,但不关心信息内容等,可形象地比喻成商品流通中的集装箱运输环节。
数据链要求严格得多,除了涉及这些内容以外,还涉及到信息格式、信息内容、链接对象和实时性等。
[参考文献]
[1]骆光明.数据链[M].国防工业出版社,2008.07.
数字通信系统中数据纠错方法【2】
【摘要】 通信系统主要包括数字通信系统和模拟通信系统两方面。
现在的通信系统大多是依靠计算机进行通信,因为计算机具有很强的数据处理与分析能力,而数据通过计算机的传递过程就是通信。
但是,不管那种通信方式,通信系统的可靠性的要求都是非常高的。
目前,我国的通信系统的规模和水平都已和国际通信系统持平,但是对于通信系统中数据传输的可靠性仍存在一些问题,其主要表现在数据进行传输时受到外界因素干扰所造成的错误信息,是否能被接收端发现并纠正,这一系统被称作差错控制系统。
本文就是针对数字通信系统中数据纠错方法所进行的研究。
同时,笔者就自己所从事的民航自动转报系统的维护工作中针对电报在传输及处理过程中控制误码率谈谈一点认识。
【关键词】 数字通信 传输数据 编码 纠错
对于数字通信系统中传输数据的纠错这方面,已经拥有了许多的方式和方法,进行控制其中包含了提高发送信号的功率、提高接受信号的噪声比以及采用编码等,都是数字通信系统中数据纠错的方法,其中提高发送信号的功率、提高接受信号的噪声比这两种方法使用条件十分有限。
其效果往往会受到各种条件的限制,而差错控制编码技术,在近些年中得到了较为广泛的使用,采用对信息编码提高发送功率有效地抑制噪声信号在接收端的干扰,从而更有效地在噪声信号中提取并恢复你所需要的传输信号。
提高发送信号功率与差错控制编码是等价的。
一、数字通信系统中数据纠错方法
数据在通信系统传输过程中都不可避免的会出现一些有偏差的信息,这就需要系统自身具有发现并纠正错误信息的能力,来确保数据在传输过程的可靠性,使差错控制在我们所能接受的最小范围内。
差错控制的方式可以分为两种类型,一种类型为反馈纠错,另一种类型为前向纠错,而由这两种类型又派生出一种混合纠错。
1、反馈纠错。
在数据传输中接收端对接收信号的差错进行编码和校验检查,来判定数据在传输过程中的每个单位帧是否产生差错,纠正错误编码时一般采用反馈重发的方式来进行检验。
这种方式是发信息端能在某种程度上发现一些传输差错的编码,并对这些编码重新进行编码传输,在加入少许的监督码元,而接收端在根据这些编码的规律对这些编码信息进行检查,当发现错误的编码时,在向发信端发出信号要求重发。
发信端在收到信号后,在对发生传输错误的那部分信息进行重发,直到信息正确为止。
发现的错误编码不一定是知道具体的位置,只是知道一个或是一些是错的。
2、前向纠错。
前向纠错方式是发信端以一种在解码时就能纠正一些在数据传输过程中所产生的错误信息的复杂编码方法,使接收端不仅能发现错误的传输信息,还能纠正错误的信息。
这种方式不需要反复的反馈信息,也不需要重发信息,虽然纠错的设备复杂,但对时间要求比较紧的信息传输很重要,不需要耽误很长的时间。
3、混合纠错。
混合纠错方式是在接收端的自动纠错无法对差错严重的信息进行纠正,已经超出了自行纠错的能力,这就需要将错误信息发回发信端,要求发信端进行重新发送。
这种方式是反馈纠错和前向纠错的'混合。
二、民航自动转报系统怎样控制电报传输中的误码
数字通信广泛应用在各个领域,处于大数据时代的民用航空电报网络为民用客机和种类繁多的通用飞机的安全飞行服务,各类业务电报数量急剧增长,航行情报、飞行动态、天气实况、气象预报等业务电报要通过民航自动转报网实时地在全国民航机场、空军机场互相传输进行信息的共享,传输的可靠性准确性极其重要。
当前中小机场都是使用国内厂家生产的自动转报机通过有线线路接入上一级的自动转报机进入民用航空电报网。
首先有线线路采用抗干扰性强的光纤线路有效减少了传输过程中的干扰,其次中小机场采用的日益成熟的自动转报机在可靠性方面有了很大的保障。
现行的自动转报系统服务器通常采用性能稳定的工业级计算机,双机热备的容错结构使系统具有很高的可靠性。
自动转报系统正常工作时,配置信道、路由等基本工作完成后,系统提供了线路告警功能和定时检测的功能,能对线路状况进行监控。
有一点特别需要监控人员注意的是民用航空电报是具有固定格式的电报,错码出现在报头部分系统能做出判断如等级错误、发电地址错误、路由错误、日时组错误等而给出告警信息,但个别错码一旦出现在报文中系统是不能够告知出现了错误的地方,并且含有错误字符的电报仍然继续自动处理、承转,这是自动转报系统无法纠错的的地方。
所以要控制航空固定电报传输中的误码率处于较低的水平最基本的条件是线路不受干扰和保证转报系统的正常。
三、结束语
本文是对数字通信系统中数据方法研究的浅谈,介绍现代通信中差错控制系统的优点和作用,它是有效解决现代通信系统中出现传输数据错误的合理方法,它可以查出错误的信息并将之改正,使得信息在传输过程中的高效性和可靠性得以保证,完成信息的有效传输。
参 考 文 献
[1]卿粼波;吕瑞;郑敏;滕奇志;何小海.基于迭代译码算法的分级分布式视频编码[A];第十五届全国图象图形学学术会议论文集[C];2010年
[2]何业军;朱光喜.Turbo乘积码的一种新的并行迭代译码算法[A];现代通信理论与信号处理进展――2003年通信理论与信号处理年会论文集[C];2003年
数字通信系统在医院的应用与发展【3】
摘 要:数字通信系统被普遍应用于医院当中,从简单的办公电话慢慢进入以患者为中心的更多应用,并已经成为医院的重要管理手段。
文章基于这一背景,简单阐述了数字通信系统的概念,重点探讨了数字通信系统在医院的应用和发展。
关键词:数字通信系统;医院;发展
随着社会经济日益进步,人们生活水平不断提高,对医疗服务的要求也越来越高。
而改善服务达到人们需求的重要手段是数字通信系统的发展,并广泛应用于医院当中,比如:医护人员移动协同服务,呼叫中心的应用等。
㈡ 常用的企业级通讯录有哪些
可以使用钉钉,
在钉钉企业通讯录里可以快速查找同企业的同事,无需添加好友也可以发起聊天,快人一步。方法如下:
手机端:【通讯录】- 企业名称下方的【组织架构】
电脑端: 左侧【联系人】- 企业名称下方的【组织架构】
若在组织架构里查看不显示其他人,可能是该部门或团队里只有自己,或者是企业管理员设置了通讯录的可见范围,可见范围外的人看不到被隐藏的人员或部门。
㈢ 行业知识科普| 数据链——无人机传输纽带
无人机数据链是一个多模式的智能通信系统,能够感知无人机在工作区域的电磁环境特征,并根据环境特征和通讯要求完成对无人机遥控、遥测、跟踪定位和传感器传输,实时动态地调整通信系统的工作参数,主要包括通信协议、工作频率、调制特性和网络结构等。达到可靠通信或节省通信资源的目的,是飞行器与地面站联系的重要纽带,可以称作是无人机的测控系统。
无人机数据链按照传输方向可以分为:上行链路和下行链路。上行链路主要完成地面站到无人机遥控指令的发送和接受,下行链路执行遥测和数据传输功能,主要完成无人机到地面站的遥测数据以及红外或电视图像的发送和接收。系统根据定位信息的传输,利用上下行链路进行测距,其性能直接影响到无人机性能的优劣。目前普通无人机大多采用定制视距数据链,而中高空、长航时无人机则都会采用视距和超视距卫通数据链。
数据链系统主要由测控管理器、发射机及接收机组成,测控管理器负责地面遥控与遥测数据的融合与处理。管理无线电发射与接收时序,使遥控与遥测能同步协调工作。发射机和接收机由无线电测控电台及天线构成,无线电测控电台采用双工数传电台,负责遥控指令的发射与遥测数据的接收。数据链的性能通常能影响无人机的性能,主要根据数据链是否具有跳频扩频功能、存储转发功能、数据加密功能、高速率、低功耗等性能来衡量无人机数据链是否优秀。
人工智能技术推动无人机进入不同的行业应用领域,随着机载传感器、定位的精准程度和执行任务的复杂程度不断上升,要求无人机具备强实用力,同时对数据链的带宽也提出了很高的要求。未来无人机数据链将向着高速、宽带、保密、抗干扰的方向发展。
目前视距内飞行是无人机的主要飞行方式,飞行距离在几公里以内。随着智能技术的发展,未来,无人机与5G通讯技术的融合将使无人机实现更精准的控制,实现超视距飞行,为无人机低空领域的飞行和更多行业的应用提供技术支持与保障。
㈣ 现在企业管理中,经常用到的几种系统有哪些,能详细介绍下吗
这方面的太多,
一、EIP
EIP(Enterprise Information Portal)企业信息门户,一个企业的信息门户,它的价值在于使企业能够释放存储在企业内部和外部的各种信息,使企业员工、用户和合作伙伴能够从单一的渠道访问其所需的个人化信息,这个单一的访问渠道就是网络浏览器(IE 或 Netscape)。
一个企业的信息门户对外是企业网站,对内则是管理和查询日常业务的公用平台。
通过企业信息门户,员工可以访问企业的生产信息、销售信息、库存信息和客户信息,以最低的成本共享和利用企业的所有信息。
而对企业来说,可以通过企业门户及时向客户提供准确的信息,而且随着网上业务的不断发展,企业信息门户还可以拓展企业的业务范围,创造新的业务机会,成为推动企业走进电子商务的强大工具。
二、CRM
CRM是Customer Relationship Management的简写,即客户关系管理。
简单地说,CRM是一个不断加强与顾客交流,不断了解顾客需求,并不断对产品及服务进行改进和提高以满足顾客的需求的连续的过程。
CRM注重的是与客户的交流,企业的经营是以客户为中心,而不是传统的以产品或以市场为中心。
为方便与客户的沟通,CRM可以为客户提供多种交流的渠道。
三、EAM
EAM(Enterprise Asset Management)是面向资产密集型企业的企业信息化解决方案的总称。
它以提高资产可利用率、降低企业运行维护成本为目标,以优化企业维修资源为核心,通过信息化手段, 合理安排维修计划及相关资源与活动。
通过提高设备可利用率得以增加收益,通过优化安排维修资源得以降低成本, 从而提高企业的经济效益和企业的市场竞争力。
在商业竞争日益激烈的今天,对于拥有高价值资产的企业来说,设备维护已不再局限于成本范畴,更成为获取利润的战略工具,EAM系列产品使这一目标得以实现。
EAM是以企业资产及其维修管理为核心的商品化应用软件,它主要包括:基础管理、工单管理、预防性维护管理、资产管理、作业计划管理、安全管理、库存管理、采购管理、报表管理、检修管理、数据采集管理等基本功能模块,以及工作流管理、决策分析等可选模块。
四、BPM
Business Process Management(BPM),即 业务流程管理,是一套达成企业各种业务环节整合的全面管理模式。
BPM涵盖了人员、设备、桌面应用系统、企业级 Backoffice 应用等内容的优化组合,从而实现跨应用、跨部门、跨合作伙伴与客户的企业运作。
BPM通常以Internet方式实现信息传递、数据同步、业务监控和企业业务流程的持续升级优化。
显而易见,BPM不但涵盖了传统“工作流”的流程传递、流程监控的范畴,而且突破了传统“工作流”技术的瓶颈。
BPM的推出,是工作流技术和企业管理理念的一次划时代飞跃。
五、ERP
ERP(Enterprise Resource Planning,企业资源计划系统)的概念,是美国Gartner Group公司于1990年提出的,其确切定义是:MRPⅡ(企业制造资源计划)下一代的制造业系统和资源计划软件。
除了MRPⅡ已有的生产资源计划,制造、财务、销售、采购等功能外,还有质量管理,实验室管理,业务流程管理,产品数据管理,存货、分销与运输管理,人力资源管理和定期报告系统。
ERP把客户需求和企业内部的制造活动以及供应商的制造资源整合在一起,形成企业一个完整的供应链,其核心管理思想主要体现在以下三个方面:一、体现对整个供应链资源进行管理的思想;二、体现精益生产、敏捷制造和同步工程的思想;三、体现事先计划与事前控制的思想。
ERP应用成功的标志是:一、系统运行集成化,软件的运作跨越多个部门;二、业务流程合理化,各级业务部门根据完全优化后的流程重新构建;三、绩效监控动态化,绩效系统能即时反馈以便纠正管理中存在的问题;四、管理改善持续化,企业建立一个可以不断自我评价和不断改善管理的机制。
六、KM
KM(Knowledge Management)知识管理
思路一:知识管理=对信息的管理。
这个领域的研究者和专家们一般都有着计算机科学和信息科学的教育背景。
他们常常被卷入到对信息管理系统、人工智能、重组和群件等的设计、构建过程当中。
对他们来讲,知识=对象,并可以在信息系统当中被标识和处理。
这一思路是较新的,并由于得到IT技术发展的支持,现在发展很快。
思路二:知识管理=对人的管理。
这个领域的研究者和专家们一般都有着哲学、心理学、社会学或商业管理的教育背景。
他们经常卷入到对人类个体的技能或行为的评估、改变或是改进过程当中。
对他们来说,知识=过程,是一个对不断改变着的技能与knowhow等的一系列复杂的、动态的安排。
这些人在传统上,要么是像一个心理学家那样热衷于对个体能力的学习和管理方面进行研究,要么就像一个哲学家、社会学家或组织理论家那样在组织的水平上开展研究。
这个思路非常古老,而且发展得也不太快。
水平一:个体的视角。
研究和实践的焦点在于个体。
水平二:组织的视角。
研究和实践的焦点在于组织。
七、EAI
EAI(enterprise application integration)企业应用集成, EAI是将基于各种不同平台、用不同方案建立的异构应用集成的一种方法和技术。
EAI通过建立底层结构,来联系横贯整个企业的异构系统、应用、数据源等,完成在企业内部的 ERP、CRM、SCM、数据库、数据仓库,以及其他重要的内部系统之间无缝地共享和交换数据的需要。
有了 EAI,企业就可以将企业核心应用和新的Internet解决方案结合在一起。
EAI(企业应用集成)将进程、软件、标准和硬件联合起来,在两个或更多的企业系统之间实现无缝集成,使它们就像一个整体一样。
尽管EAI常常表现为对一个商业实体(例如一家公司)的信息系统进行业务应用集成,但当在多个企业系统之间进行商务交易的时候,EAI也表现为不同公司实体之间的企业系统集成,例如B2B的电子商务。
八、PLM
PLM的英文全称为Proct Life-cycle Management,中文翻译为产品生命周期管理。
PLM对产品的整个生命周期(包括:培育期、成长期、成熟期、衰退期、结束期)进行全面管理,通过培育期的研发成本最小化和成长期至结束期的企业利润最大化来达到降低成本和增加利润的目标。
九、SCM
供应链管理Supply Chain Management(SCM)应用是在企业资源规划(ERP)的基础上发展起来的,它把公司的制造过程、库存系统和供应商产生的数据合并在一起,从一个统一的视角展示产品建造过程的各种影响因素。
它主要是一种整合整个供应链信息及规划决策,并且自动化和最佳化信息基础架构的软件,目标在于达到整个供应链的最佳化(在现有资源下达到最高客户价值的满足),为一种新的决策智能型软件,覆盖在所有供应链公司的ERP和交易处理系统之上。
SCM通常具有一个转换接口,用以整合供应链上各公司的应用系统(尤其是ERP系统)及各种资料型态,此转换会通过标准中介工具或技术,如DCOM、COBRA、ODBC等等,提供与主要决策系统互动的能力。
十、CC
CC就是电子商务中所说的协同商务,那么什么是协同商务呢?"协同商务"一般是指企业与供应商、客户、合作伙伴以及雇员在信息共享的基础上协同工作。
在企业内部,有各部门之间的业务协同、不同的业务指标 和目标之间的协同以及各种资源约束的协同。
这主要体现在:不同部门计划之间,各层次计划之间,不同周期计划之间,库存、生产、销售、财务部门间的协同,公司战略、战术、运作层次间的协同,长短期计划间的协同等。
◆ 企业内部信息资源的整合和综合利用--面向知识管理、经营管理与决策
◆ 企业内部应用资源的开发和业务重组--面向市场与客户需求的变化
◆ 企业内部及与外部的商务沟通--面向协同商务和电子商务
十一、BIS
BIS(Business Information System)是计算机、打印机、通信装置,以及其他用于处理数据的设备的组合。
完全自动化的商务信息系统能够接收、处理和存储数据;能够根据需要传输信息;并且能够根据命令生成报告或打印输出。
㈤ 伊拉克战争之中 美军怎样运用数据链
摘要:在21世纪的现代化战争中,无论是防御性作战还是进攻性作战,都越来越依赖于不断增长的大容量战术数据。目前各种参与作战的空中、海上和地面平台以及指挥中心都必须通过可*、安全和可互操作的通信链路来实现有效的连接,以交换和共享各种重要的数据,并使指挥官有效地指挥其作战部队,从而赢得战争的最后胜利。目前,美军及其北约盟军使用多种数据链。本文在简要分析早期开发的主要战术数据链之后,重点分析了北约开发的新型战术数据链,如Link-16(JTIDS/MIDS)和Link-22。
Abstract:
目录:
内容: 1 概述
战术数据链路系统是一种供战区联合作战中各军种共同使用的战术数据信息传输系统。它是军队在作战行动中用于传输各种格式化数字信息的一种手段或途径。在未来高技术条件下的信息化网络化战争中,指挥与控制中心必须实时地获取、处理、传输和显示来自所有作战单元和武器系统平台的各种信息,使指挥员能随时了解掌握战场态势,迅速做出作战行动决策,以牢牢掌握战争的主动权。战术数据链路将在这一过程中发挥举足轻重的作用。以美军为首的西方发达国家在C4ISR系统的构建过程中,普遍将数据链作为其中的关键环节。为了适应未来战争的需要,美军和北约部队现已广泛应用各种战术数据链,构成各军种指挥控制通信情报系统的装备体系,并具备了较强的作战保障能力。目前,美军及其北约盟军使用的数据链有Link-4/11/14/16等,可在各级指挥控制系统的显示控制台上显示完整的战场战术态势。
战术数据链的发展总趋势是主要围绕着建立一个实时、保密、抗干扰多功能,以及能使用高频、特高频和极高频等频段的小型化标准战术数据链方向继续开发与不断改进。例如,由于Link-11采用点名呼叫方式传输数据,用户必须排队等候,网络成员之间要传输48位的M序列消息,这非常不适应高速度的现代化高技术战争。为此,北约与英国、法国和加拿大等国正在联合开发一种能克服Link-11缺点的Link-22新数据链。又如,多功能的JTIDS数据分发系统,尽管其2类终端比1类终端体积缩小了很多,重量也减轻了不少,但仍然无法适用于F-16战斗机之类平台。于是,美国、英国、法国、德国、加拿大、意大利、西班牙、挪威等国联合开发一种与JTIDS2类终端类似的小型多功能信息分发系统(MIDS)。总之,美海军认为早期开发的各种数据链不能满足现代战斗管理数据传输的需要,预计2005年,16号链路将完全取代Link-4A/C、Link-14,到2015年将大量装备Link-16的改进型,到2030年Link-16的改进型将完全取代早期研制的各种数据链。
下面简单介绍一下早期开发的主要战术数据链,然后重点介绍美国开发的新型战术数据链,如Link-16(JTIDS/MIDS)和Link-22。
2 早期开发的主要战术数据链
2.1 Link-11(TADIL-A/B)
Link-11是一条用于交换战术数据的数据链,采用网络通信技术和标准消息格式。Link-11有Link-11A和B两种类型。Link-11A是一种网状的半双工数据链,采用常规链路波形(CLEW)进行数据交换。它使用差分QPSK调制技术,数据传输速率为2400bps。Link-11 B是一种专用的点到点全双工数字数据链,采用单音链路波形(SLEW)。这种数据链采用串行传输帧特性和标准的消息格式,数据在一个全自动、相位连续、全双工和频移调制的数据链上进行交换,数据链的标准速率为1200bps。
2.2 Link-4(TADIL-C)
Link-4是一种非保密的网状数据链路。在UHF频段,它采用FSK调制,数据传输速率为5000bps或10000bps。Link-4A和Link-4C是两种独立的链路:
· Link-4A是一种半双工或全双工飞机控制链路、供所有航空母舰上的舰载飞机使用。它采用“V”和“R”序列消息,支持自动舰上降落系统、空中交通管制、空中拦截控制、地面控制轰炸系统和航空母舰上的飞机惯性导航系统。为了连接各种装置和交换目标信息,Link-4A采用了单频时分多址技术。
· Link-4C是一种机对机数据链,是对Link-4A的补充,但这两种链路互相之间不能进行通信联络。Link-4C使用“F”序列消息,具有部分抗干扰能力。它是专门为F-14研制的,F-14不能同时使用Link-4A和Link-4C进行通信。
2.3 Link-14
Link-14是一种网状的单工数据链。在HF频段,采用SSB话音信道;在UHF频段,以单向电传通播方式工作,数据传输速率为75bps和150bps,传输数据时的字长为5、6、7、8比特。它用于没有海军战术数据系统的舰艇接收监视情报信息,具有可加密能力,但无抗干扰能力。
Link-11A/B、Link-4和Link-14的主要技术性能指标如表1所示。
3 新型战术数据链
3.1 Link-16 (TADIL)
Link-16是一种高速视距UHF数据链,目前英国和美国正在研究超视距Link-16。Link-16包括传输设备、通信协议和报文标准三大要素,是信息源、C2中心以及飞机、导弹等平台之间实现有效连接的关键设施,是加强C4ISR综合一体化系统的重要手段。Link-16主要由“联合战术信息分发系统”/“多功能信息分发系统”(JTIDS/MIDS)终端设备、指挥与控制处理器和战术数据管理(TADS)系统组成。它可通过“层叠网”在预先分配的时隙内实时发送、接收战术数据。其特性有:支持各种环境;大量用户;JTIDS跳频抗干扰能力;具有多个“层叠网”的JTIDS单一网络;通过许多机载中继设备来扩大连通性范围。
目前,Link-16使用联合战术信息分发系统(JTIDS)终端和多功能信息分发系统(MIDS)终端,因此,它可在C2系统与飞机、导弹等武器系统平台之间,以及在各作战单元之间传输作战所需要的各种战术数据信息,实现信息源、指挥控制中心与武器平台之间的有效连接,以达到战场资源共享的目的。它主要用于战场情报监视、电子战、任务管理、武器协调、空中交通管制、相关导航以及话音加密等。下面将分别介绍JTIDS和MIDS两个终端设备的应用情况。
3.1.1 JTIDS
JTIDS是美国研制的供三军联合使用的一种通信、导航和识别多功能综合系统,能提供高保密、抗干扰、大容量数据和话音通信及相对导航等服务。它采用MSK调制、TDMA协议、跳频、直接序列扩频和跳时等许多先进技术,再加上发射加密、消息加密和信道编码,使系统构成一个无节点的、多联系路径的、具有高保密和抗干扰能力的战术网。当采用7位网络识别码时,它能支持128个网,但实际上最多使用15~20个网络。网内成员可多达上百甚至上千个,覆盖480´960km区域。每个成员利用一个或多个所分配到的时隙依次发送信息,通过机载平台中继在水面舰船之间可实现超视距数据传输。直接序列扩频带宽为3.5MHz,跳频频率数为51个,频率间隔3MHz,数据传输速率为28.8bps、57.6kbps、119kbps或238kbps。
JTIDS具有以下两大功能:
⑴通信:直接连接Link-4的抗干扰双向数字数据;抗干扰数字话;抗干扰的DTDMA数字数据;直接连接Link-11的抗干扰数字数据;连接TADIL-B的抗干扰数字数据;精确时间同步;同时加入多个网络。
--------------------------------------------------------------------------------
本文由 [yangchwei] 发表,[yangchwei] 与〖中国国防科技论坛〗依《论坛守则》享有相关权利;
其他单位或个人使用、转载或引用本文时必须征得 [yangchwei] 与〖中国国防科技论坛〗的同意;
发贴者承担一切因本文发表而直接或间接导致的民事或刑事法律责任;
本论坛的管理员和版主有权不事先通知发贴者而删除本文!
--------------------------------------------------------------------------------
2006-2-20 20:58:00 yangchwei
等级:注册用户
文章:13
积分:155
门派:无门无派
注册:2006年2月20日第 2 楼
--------------------------------------------------------------------------------
⑵导航:常规塔康;精确测距和相对导航;空对空测距和测位;测向(D/F);敌我识别;Mark XSIF应答器能力;Mark XII 模式4;其他工作方式(模块化)。
JTIDS系统传送四类信息:
⑴“0”类数字信息:这类信息是非编码自由电文,未采用纠错编码;
⑵“1”类数字信息:这是一种固定格式的数字信息,采用了纠错编码,适合于格式化信息变换,为JTIDS系统常用格式;
⑶“2”类数字信息(RTT):这类信息用于往返校时(RTT),即用于有源时间同步;
⑷“3”类数字信息:这类信息是采用纠错编码自由电文,除采用纠错编码外,其余和“0”类相同。
JTIDS的基本时分单位为时隙,如图1所示。每个时隙分为三段,即同步段、数据段和保护段。同步段为0.52ms,数据段为2.83ms,保护段为4.4585ms。同步段又分为粗同步和精同步两部分,粗同步为416ms,精同步为104ms。
TDMA时隙排成12.8分钟的时元,每个时元包含64个时帧,每个时帧为12s,共有1536个时隙,每个时隙为7.8125ms,每秒有128个时隙。用户在一个时帧或时元内分配到一组时隙,将消息发送到网内的其他成员。TDMA信号结构(即JTIDS的常规信号格式)如图2所示。
信号的基本单位是字符,TDMA结构有两种类型:单脉冲字符和双脉冲字符。单脉冲字符长度为13ms,它由6.4ms的脉冲和6.6ms的间隔组成;双脉冲字符的长度为26ms,它由两个脉冲组成。这两个脉冲载有相同的5比特信息,但是,每个脉冲的发射频率和基码序列各不相同。当采用单脉冲格式跳频时,跳频速率为38461.5次/秒;当采用双脉冲格式跳频时,跳频速率为76923次/秒。
表1 Link-11A/B、Link-4A和Link-14的主要技术性能指标
通信参数
Link-11A
Link-11B
Link-4A
Link 14
功 能
传输战斗信息(在装备海军战术数据系统的舰船和飞机之间形成通信网)
连接执行军事任务的战术和飞机控制单元,传输话音和数字信号
传输飞机控制信息和目标信息(向截击机提供引导和控制信息)
在装有指挥控制计算机和无指挥控制计算机的舰艇之间传输战术态势数据
发 射 场
地-地、地-空、空-空、空-舰
地-地、地-空
地-空、空-空
舰-舰、舰-空
传输信息
跟踪信息、指挥控制信息、管理数据以及状态信息
指挥信息、目标信息、咨询信息及战斗状态信息
战术态势信息
信息形式
M序列
V和R序列
频率范围
UHF(225~399.975MHz)
HF(2~30MHz)
UHF(225~399.975MHz)
UHF(225~399.975MHz)
用 户
空军、海军战术数据系统
空、海、陆军战术数据系统
空军、海军战术数据系统
海军、空军战术数据系统
结 构
星网:离散配置发射,连接全部接收机
点-点离散接收/发射
点-点离散接收/发射
点-点离散接收/发射
工作方式
半双工,TDMA
全双工
信息传输采用半双工,单频率上用TDMA,联机性能监控用全双工
单向电传通播方式
额定用户
不同的终端额定用户数不同
一个指挥控制中心对4个备用站
传输速率
标准:2400/1200bps
实际用2240/1364bps
1200bps, 2400bps及更高标准速率
信息传输用5kbps
联机性能监控用10kbps
37.5,75,100,150bps
保密设备
有
有
有
有
调制样式
QPSK
对1200bps用FSK
对2400bps用QPSK
FSK
1kHz调幅音再经音频多变换
码 型
(30,24)汉明码
国际标准电传码
2006-2-20 20:59:00 yangchwei
等级:注册用户
文章:13
积分:155
门派:无门无派
注册:2006年2月20日第 3 楼
--------------------------------------------------------------------------------
此外,JTIDS还有两种特殊的信号格式,即Packed-2和Packed-4。如图3所示。它们都使用双脉冲信号格式,但双脉冲彼此的载频不同,所载信息也不一样。这种信号格式成了重复周期为13ms的单脉冲。由图3可知,Packed-4的数据段扩展了2.418ms,保护段只剩下2.04ms,由此可见,数据速率提高了。这样,Packed-2格式的数据速率提高到119.04kb/s,而Packed-4格式的数据速率提高到238.08kb/s(未计题头,也未算纠错编码)。Packed-4格式是JTIDS的TDMA最大的可能数据传输速率。
3.1.2 MIDS
多功能信息分发系统(MIDS)是美、英、法、德和西班牙等国联合研制的,已于2002年在美国空军取得了初始运行能力。2002年1月15日,美空军已在F-15C战斗机上完成了该系统的部署。MIDS实质上是JTIDS的缩型,但同样具有战术数据链能力,计划部署在2003年服役的48架F/A-18C/D/E/F舰载机上。
MIDS是一个小体积终端(LVT),其功能与JTIDS2类终端相同,而体积仅为后者的三分之一,重量仅为后者的一半。因此,它适于装备空中的平台有F-15、F-16、F/A-18、AMX、“飓风”、“幻影”2000、“旋风”、“台风”欧洲战斗机。MIDS小体积终端还装备法国海军的“戴高乐”航空母舰、德国海军F124护卫舰、意大利的“加里瓦”航空母舰和护卫舰、四个欧洲国家的地面指挥控制系统以及供法国、美国及其他国家陆军使用。
MIDS可在L波段内提供安全的、数字的、抗干扰的实时话音/数据通信,并通过自动中继技术实现超视距通信。通信范围为555.9千米(300海里),最大可中继距离达2223.6千米(1200海里)。MIDS系统除了能提供增强的态势感知外,还能够提供极强的敌我识别能力。
MIDS采用先进的电子战保护技术,如快速跳频扩谱调制,有效的误差检测和纠错码,格式化的信息目录以及话音与文本的加密传输。MIDS也综合运用了超高速集成电路(VHSIC)和微波/毫米波单片集成电路(MMIC)技术,从而使之能够提供与JTIDS相同的操作功能。每个MIDS终端能够实现高达238kbs的发送或接收速率。其未来发展主要是提高系统的有效性,包括将数据传输速率从238kbs提高到1.1Mbs,以及提高飞行员需要看的目标自动排序能力。
3.2 Link-22
近年来,北约开发了一种新型数据链,被称为Link-22,它是一种抗电子对抗的超视距战术通信系统,在HF(3~30MHz)或UHF(225~400MHz)频段采用定频或跳频技术。典型的单个高频网络支持1.2~3.6kbs数据率,单个特高频网络提供2.4~10kbs数据率。在高频频段,系统最大无缝隙覆盖555.9千米(300海里),中继协议可延长这个距离。在结构上,采用时分多址或动态时分多址,提供更高的灵活性并减少网管附加操作。起初Link-22是作为北约改进型Link-11开发的,在某种程度上,Link-22是Link-16和Link-11的混合链路,尽管Link-22运转需要北约改进型Link-11的通信设备,但它还是尽可能地使用现有的无线电设备。
Link-22可以使4个网同时工作,组成超级网络,使任一参与者在任何网络都能与任何其它参与者通信。估计在2002年到2006年间具体实施。它从下列三方面进行了改进:
⑴ 采用当前HF数据通信应用中最常用的一类单音调制解调器来代替Link-11中使用的并行音调调制解调器。这两种调制解调器的带宽额定值相同, 都为3kHz;
⑵ Link-22使用TDMA网络协议,而不是使用Link-11所采用的询问-应答协议。根据TDMA协议,每个网络成员都分配若干个TDMA格式的112.5ms时隙;
⑶ Link-22可以传送72位F序列消息,类似于Link-16传送的70位J序列消息(Link-11采用的是48位M序列消息)。
在给定的时间内,Link-22系统网络控制器能够确定网络中将要使用检错与纠错(EDAC)和波形格式的6种不同组合形式中的任何一种组合形式。根据所选的组合形式,网络在一个时隙内,工作速率最低可传输2种F序列消息,最高可传输6种F序列消息。通过利用由正交调幅所提供的较高调制比特率,网络的工作速率可以将最快的F序列消息速率从每时隙6种增大到16种。当前Link-22的信号格式如下:
3.2.1 当前格式
表2列出了当前Link-22系统中所使用的6种RS编码和波形的组合方式。RS码的符号为GF(28)个元素。因此,每个码符号为一个8位的数值,任何码字的最大长度为255个码符号。正如表2中所给出的一样,所有码都远比255个码符短,因此,具有非常良好的错误标号特性。
图4给出了当前三种波形WF-1,WF-2和WF-3的详细时隙结构。在每一时隙内使用了2种调制符号:数据符号(D)和检测符号(P)。数据符号(D)传输数据,检测符号(P)是接收调制解调器用来检测信道的多径结构,并据此调整其均衡器的抽头(接收调制解调器可预先知道它的值)。
图5示出的截面可以识别出数据符号和检测符号,而且还给出了精确数字(240个数据符号,30个检测符号)。根据波形可知,数据符号为4PSK或8PSK,然而检测符号始终为4PSK。在所有情况下,键控速率为每秒2400个符号。
表2 当前的EDAC和波形组合形式
每时隙的F序列消息编号(#)
RS编码速率
波形
2
(36, 21)
WF-2
3
(36, 30)
WF-2
3
(48, 39)
WF-1
4
(48, 39)
WF-1
5
(72, 48)
WF-3
6
(72, 57)
WF-3
利用表1和图4,并作一些运算,可观察到每个RS编码信息符号(字节)数比传输F序列消息指定的数目大3个。在每个时隙内,这额外的3个“报头字节”可用来满足网络管理的需要。
3.2.2 高速率格式
增大F序列消息流通量的任何一种技术都必须保留当前系统的某些特点,尤其是:
⑴ 时隙的时间必须保持为TDMA协议要求的112.5ms;
⑵ 每个时隙必须提供3个额外的编码“报头字节”;
⑶在给定时间内,传输F序列消息集(加上报头字节)时,未检错误概率必须很小。
表3列出了高速率Link-22格式的RS码和波形的10种组合形式。虽然这些码比当前使用的码长,但是它们仍然比最大长度255短得多,因此,也具有非常良好的错误标号特性。
表3 高速率EDAC和波形的组合方式
每时隙的F序列消息编号(#)
RS编码速率
波形
7
(90, 66)
WF-4
8
(90, 75)
WF-4
9
(120, 84)
WF-5
10
(120, 93)
WF-5
11
(120, 102)
WF-5
12
(150, 111)
WF-6
13
(150, 120)
WF-6
14
(150, 129)
WF-6
15
(180, 138)
WF-7
16
(180, 147)
WF-7
图5给出了4种附加高速率波形WF-4~WF-7的详细时隙结构。每种情况中的数据调制符号类型为8PSK或M元QAM(如图5所示)。与当前使用的波形的情况一样,调制符号键控速率为每秒2400符号。任何时隙的数据符号都夹在两个检测序列之间,这两个检测序列分别终止当前时隙和前一个时隙。取自这两个序列的多径结构相结合,就能提高数据符号均衡器的性能。
图6所示分别为16、32和64元QAM的QAM信令结构。