❶ 学习web前端需要学数据库吗
学习web前端其实是不用学习数据库的
web前端主要学习的内容有:
1、Web前端需要掌握HTML+CSS的静态布局相关知识。
HTML主要就是网页编辑,这部分知识非常简单,基本上都能学会。当然前提是经常练习要掌握熟练。
2、Web前端还需要学习JavaScript的知识。
JavaScript是Web前端中最重要的知识,所以这部分知识要引起重视。当然难度也相对较大,同学们需要用功学习哦!
3、Web前端需要学习jQuery。
其实jQuery要容易一些,不过不要认为有了jQuery就忽略了JavaScript,大型互联网公司都是直接用JavaScript写的,这样的安全性要更加的高。看这个人对自己的标准是怎么样的。
4、Web前端需要学一点HTML5+CSS3的知识。
不要认为HTML5只是添加了一些标签而已,如果有兴趣可以去网络看看HTML5的强大之处,很多的特效用CSS3都可以做。
5、Web前端Bootstrap框架的学习,这个框架应该每个东西都会用,难度不大,必须掌握。
6、Web前端还要学习Node.js–react–angular.js—backbone其实这些东西如果你JavaScript理解的一般,学起来会困难一些,不过前端框架更新的还算很快。如果能够把JavaScript学好其实上面都够了。
❷ 前端开发用什么写数据库和接口比较好
很高兴为您解答。现在流行的用 BS ,只要管好服务器就行,无需操劳各终端,这比 CS 强多了,并且BS 把前台界面统一到浏览器,也比五花八门的 CS 前端软件让用户容易接受。
BS 模式下,数据库服务软件还是原来那些,如 MS SQL Server ,Oracle, MySQL 等等, 而做开发工具主要是 ASP,JSP,PHP 之类的。推荐采用 MySQL + PHP,因为这两者是免费的,是开源的,不用担心许可证问题,不用担心使用盗版受罚,不用担心昂贵的软件购买费用。
至于具体的数库开发,重要的是思想,而不是工具。深入理解、掌握各种范式,根据具体应用熟练规划 E-R 图。希望能帮到您。
❸ 数据库包括哪些
问题一:数据库系统包括什么? 通常由软件、数据库和数据管理员组成。
问题二:请问数据库有哪些种类呢? 根据存储模型划分,数据库类型主要可分为:网状数据库(Network Database)、关系数据库(Relational Database)、树状数据库(Hierarchical Database)、面向对象数据库(Object-oriented Database)等。商业应用中主要是关系数据库,比如Oracle、DB2、Sybase、MS SQL Server、Informax、MySQL等。全部罗列出来是没有意义的,数据库太多了,你不说你的工作是涉及哪方面,恐怕很难提供更适合你的数据库。
初级应用一般是ACCESS 配合的脚本程序一般是 ASP ASP.NET JSPMICROSOFT SQL 比较复杂点 不过功能强大很多 配合的脚本和ACCESS的一样MYSQL和PHP的组合是比较完美的如果你需要处理1000W条数据以上级别的数据,那以上的都不合适,一般用的比较多的是ORACLE 这个入门难度非常大如果想学的话就先学MICROSOFT SQL吧,这个网上教学比较多,ASP.NET 2.0,应用的是非常广泛的。
问题三:sql数据类型有哪些 一、 整数数据类型
整数数据类型是最常用的数据类型之一。
1、INT (INTEGER)
INT (或INTEGER)数据类型存储从-2的31次方 (-2 ,147 ,483 ,648) 到2的31次方-1 (2 ,147 ,483,647) 之间的所有正负整数。每个INT 类型的数据按4 个字节存储,其中1 位表示整数值的正负号,其它31 位表示整数值的长度和大小。
2、SMALLINT
SMALLINT 数据类型存储从-2的15次方( -32, 768) 到2的15次方-1( 32 ,767 )之间的所有正负整数。每个SMALLINT 类型的数据占用2 个字节的存储空间,其中1 位表示整数值的正负号,其它15 位表示整数值的长度和大小。
3、TINYINT
TINYINT数据类型存储从0 到255 之间的所有正整数。每个TINYINT类型的数据占用1 个字节的存储空间。
4、BIGINT
BIGINT 数据类型存储从-2^63 (-9 ,223, 372, 036, 854, 775, 807) 到2^63-1( 9, 223, 372, 036 ,854 ,775, 807) 之间的所有正负整数。每个BIGINT 类型的数据占用8个字节的存储空间。
二、 浮点数据类型
浮点数据类型用于存储十进制小数。浮点数值的数据在SQL Server 中采用上舍入(Round up 或称为只入不舍)方式进行存储。所谓上舍入是指,当(且仅当)要舍入的数是一个非零数时,对其保留数字部分的最低有效位上的数值加1 ,并进行必要的进位扰腔清。若一个数是上舍入数,其绝对值不会减少。如:对3.14159265358979 分别进行2 位和12位舍入,结果为3.15 和3.141592653590。
1、REAL 数据类型
REAL数据类型可精确到第7 位小数,其范围为从-3.40E -38 到3.40E +38。 每个REAL类型的数据占用4 个字节的存储空间。
2、FLOAT
FLOAT数据类型可精确到第15 位小数,其范围为从-1.79E -308 到1.79E +308。 每个FLOAT 类型的数据占用8 个字节的存储空间。 FLOAT数据类型可写为FLOAT[ n ]的形式。n 指定FLOAT 数据的精度。n 为1到15 之间的整数值。当n 取1 到7 时,实际上是定义了一个REAL 类型的数据,系统用4 个字节存储它圆慎;当n 取8 到15 时,系统认为其是FLOAT 类型,用8 个字节存储它。
3、DECIMAL
DECIMAL数据类型可以提供小数所需要的实际存储空间,但也有一定的限制,您可以用2 到17 个字节来存储从-10的38次方-1 到10的38次方-1 之间的数值。可将其写为DECIMAL[ p [s] ]的形式,p 和s 确定了精确的比例和数位。其中p 表示可供存储的值缓前的总位数(不包括小数点),缺省值为18; s 表示小数点后的位数,缺省值为0。 例如:decimal (15 5),表示共有15 位数,其中整数10 位,小数5。 位表4-3 列出了各精确度所需的字节数之间的关系。
4、NUMERIC
NUMERIC数据类型与DECIMAL数据类型完全相同。
注意:SQL Server 为了和前端的开发工具配合,其所支持的数据精度默认最大为28位。
三、 二进制数据类型
1、BINARY
BINARY 数据类型用于存储二进制数据。其定义形式为BINARY( n), n 表示数据的长度,取值为1 到......>>
问题四:常用数据库有哪些? 1. IBM 的DB2
作为关系数据库领域的开拓者和领航人,IBM在1997年完成了System R系统的原型,1980年开始提供集成的数据库服务器―― System/38,随后是SQL/DSforVSE和VM,其初始版本与SystemR研究原型密切相关。DB2 forMVSV1 在1983年推出。该版本的目标是提供这一新方案所承诺的简单性,数据不相关性和用户生产率。1988年DB2 for MVS 提供了强大的在线事务处理(OLTP)支持,1989 年和1993 年分别以远程工作单元和分布式工作单元实现了分布式数据库支持。最近推出的DB2 Universal Database 6.1则是通用数据库的典范,是第一个具备网上功能的多媒体关系数据库管理系统,支持包括Linux在内的一系列平台。
2. Oracle
Oracle 前身叫SDL,由Larry Ellison 和另两个编程人员在1977创办,他们开发了自己的拳头产品,在市场上大量销售,1979 年,Oracle公司引入了第一个商用SQL 关系数据库管理系统。Oracle公司是最早开发关系数据库的厂商之一,其产品支持最广泛的操作系统平台。目前Oracle关系数据库产品的市场占有率名列前茅。
3. Informix
Informix在1980年成立,目的是为Unix等开放操作系统提供专业的关系型数据库产品。公司的名称Informix便是取自Information 和Unix的结合。Informix第一个真正支持SQL语言的关系数据库产品是Informix SE(StandardEngine)。InformixSE是在当时的微机Unix环境下主要的数据库产品。它也是第一个被移植到Linux上的商业数据库产品。
4. Sybase
Sybase公司成立于1984年,公司名称“Sybase”取自“system”和 “database” 相结合的含义。Sybase公司的创始人之一Bob Epstein 是Ingres 大学版(与System/R同时期的关系数据库模型产品)的主要设计人员。公司的第一个关系数据库产品是1987年5月推出的Sybase SQLServer1.0。Sybase首先提出Client/Server 数据库体系结构的思想,并率先在Sybase SQLServer 中实现。
5. SQL Server
1987 年,微软和 IBM合作开发完成OS/2,IBM 在其销售的OS/2 ExtendedEdition 系统中绑定了OS/2Database Manager,而微软产品线中尚缺少数据库产品。为此,微软将目光投向Sybase,同Sybase 签订了合作协议,使用Sybase的技术开发基于OS/2平台的关系型数据库。1989年,微软发布了SQL Server 1.0 版。
6. PostgreSQL
PostgreSQL 是一种特性非常齐全的自由软件的对象――关系性数据库管理系统(ORDBMS),它的很多特性是当今许多商业数据库的前身。PostgreSQL最早开始于BSD的Ingres项目。PostgreSQL 的特性覆盖了SQL-2/SQL-92和SQL-3。首先,它包括了可以说是目前世界上最丰富的数据类型的支持;其次,目前PostgreSQL 是唯一支持事务、子查询、多版本并行控制系统、数据完整性检查等特性的唯一的一种自由软件的数据库管理系统.
......>>
问题五:数据库的对象有哪些 Funciton:函数
Procere:存储过程
Package:代码包,一个包里面,定义多个存储过程、函数、类型、常量等
Type:自定义数据类型
Trigger:触发器
Job:数据库作业 (定期执行的)
Table:表
Index:索引
Constraint:约束,限制各数据项应满足哪些限阀条件
View:视图
Materialized View:物化视图
Sequence:序列
User:叫 用户
Synonym:同义词
Database link:数据库链接(ORACLE有,别的数据库不熟,想必也应该有,可能不叫这个名字)
TableSpace:表空间(ORACLE叫这个名字,别的数据库不熟)
CURSOR:游标
常用的大致这些,可能会有遗漏,但也应该不会差太多。
问题六:常用数据库有哪些?他们有什么区别 开源的Mysql顶;PostgreSQL即开放源码的
商业的Oracle/SQL Server/DB2即收费的
问题七:查看数据库中有哪些表空间 可以用S罚L语句 SELECT ** FROM v$tablespace
也可以用oracle enterprise manger console 直接在可视化窗口上查看
问题八:常见的数据库应用系统有哪些? 现在极大多的企业级软件都是基于数据库的。
比如:
ERP: 企业资源管理计划
CRM: 客户关系管理
OA: 办公自动化。
12306铁道部的网上订票系统。
。。。
问题九:如何看mysql都有哪些数据库 第一步:首先是查看mysql数据库的端口号,使用命令show
第二步:查看有哪些数据库,
第三步:查看mysql数据库所有用户,
第四步:查看某个数据库中所有的表
问题十:数据库系统包括什么? 通常由软件、数据库和数据管理员组成。
❹ 大数据数据库有哪些
问题一:大数据技术有哪些 非常多的,问答不能发link,不然我给你link了。有譬如Hadoop等开源大数据项目的,编程语言的,以下就大数据底层技术说下。
简单以永洪科技的技术说下,有四方面,其实也代表了部分通用大数据底层技术:
Z-Suite具有高性能的大数据分析能力,她完全摒弃了向上升级(Scale-Up),全面支持横向扩展(Scale-Out)。Z-Suite主要通过以下核心技术来支撑PB级的大数据:
跨粒度计算(In-Databaseputing)
Z-Suite支持各种常见的汇总,还支持几乎全部的专业统计函数。得益于跨粒度计算技术,Z-Suite数据分析引擎将找寻出最优化的计算方案,继而把所有开销较大的、昂贵的计算都移动到数据存储的地方直接计算,我们称之为库内计算(In-Database)。这一技术大大减少了数据移动,降低了通讯负担,保证了高性能数据分析。
并行计算(MPP puting)
Z-Suite是基于MPP架构的商业智能平台,她能够把计算分布到多个计算节点,再在指定节点将计算结果汇总输出。Z-Suite能够充分利用各种计算和存储资源,不管是服务器还是普通的PC,她对网络条件也没有严苛的要求。作为横向扩展的大数据平台,Z-Suite能够充分发挥各个节点的计算能力,轻松实现针对TB/PB级数据分析的秒级响应。
列存储 (Column-Based)
Z-Suite是列存储的。基于列存储的数据集市,不读取无关数据,能降低读写开销,同时提高I/O 的效率,从而大大提高查询性能。另外,列存储能够更好地压缩数据,一般压缩比在5 -10倍之间,这样一来,数据占有空间降低到传统存储的1/5到1/10 。良好的数据压缩技术,节省了存储设备和内存的开销,却大大了提升计算性能。
内存计算
得益于列存储技术和并行计算技术,Z-Suite能够大大压缩数据,并同时利用多个节点的计算能力和内存容量。一般地,内存访问速度比磁盘访问速度要快几百倍甚至上千倍。通过内存计算,CPU直接从内存而非磁盘上读取数据并对数据进行计算。内存计算是对传统数据处理方式的一种加速,是实现大数据分析的关键应用技术。
问题二:大数据使用的数据库是什么数据库 ORACLE、DB2、SQL SERVER都可以,关键不是选什么数据库,而是数据库如何优化! 需要看你日常如何操作,以查询为主或是以存储为主或2者,还要看你的数据结构,都要因地制宜的去优化!所以不是一句话说的清的!
问题三:什么是大数据和大数据平台 大数据技术是指从各种各样类型的数据中,快速获得有价值信息的能力。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。
大数据平台是为了计算,现今社会所产生的越来越大的数据量。以存储、运算、展现作为目的的平台。
问题四:常用大型数据库有哪些 FOXBASE
MYSQL
这俩可算不上大型数据库管理系统
PB 是数据库应用程序开发用的ide,根本就不是数据库管理系统
Foxbase是dos时代的产品了,进入windows时代改叫foxpro,属于桌面单机级别的小型数据库系统,mysql是个中轻量级的,但是开源,大量使用于小型网站,真正重量级的是Oracle和DB2,银行之类的关键行业用的多是这两个,微软的MS SQLServer相对DB2和Oracle规模小一些,多见于中小型企业单位使用,Sybase可以说是日薄西山,不行了
问题五:几大数据库的区别 最商业的是ORACLE,做的最专业,然后是微软的SQL server,做的也很好,当然还有DB2等做得也不错,这些都是大型的数据库,,,如果掌握的全面的话,可以保证数据的安全. 然后就是些小的数据库access,mysql等,适合于中小企业的数据库100万数据一下的数据.如有帮助请采纳,谢!
问题六:全球最大的数据库是什么 应该是Oracle,第一,Oracle为商业界所广泛采用。因为它规范、严谨而且服务到位,且安全性非常高。第二,如果你学习使用Oracle不是商用,也可以免费使用。这就为它的广泛传播奠定了在技术人员中的基础。第三,Linux/Unix系统常常作为服务器,服务器对Oracle的使用简直可以说极其多啊。建议楼梗多学习下这个强大的数据库
问题七:什么是大数据? 大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。(在维克托・迈尔-舍恩伯格及肯尼斯・库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据的方法[2])大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
说起大数据,就要说到商业智能:
商业智能(Business Intelligence,简称:BI),又称商业智慧或商务智能,指用现代数据仓库技术、线上分析处理技术、数据挖掘和数据展现技术进行数据分析以实现商业价值。
商业智能作为一个工具,是用来处理企业中现有数据,并将其转换成知识、分析和结论,辅助业务或者决策者做出正确且明智的决定。是帮助企业更好地利用数据提高决策质量的技术,包含了从数据仓库到分析型系统等。
商务智能的产生发展
商业智能的概念经由Howard Dresner(1989年)的通俗化而被人们广泛了解。当时将商业智能定义为一类由数据仓库(或数据集市)、查询报表、数据分析、数据挖掘、数据备份和恢复等部分组成的、以帮助企业决策为目的技术及其应用。
商务智能是20世纪90年代末首先在国外企业界出现的一个术语,其代表为提高企业运营性能而采用的一系列方法、技术和软件。它把先进的信息技术应用到整个企业,不仅为企业提供信息获取能力,而且通过对信息的开发,将其转变为企业的竞争优势,也有人称之为混沌世界中的智能。因此,越来越多的企业提出他们对BI的需求,把BI作为一种帮助企业达到经营目标的一种有效手段。
目前,商业智能通常被理解为将企业中现有的数据转化为知识,帮助企业做出明智的业务经营决策的工具。这里所谈的数据包括来自企业业务系统的订单、库存、交易账目、客户和供应商资料及来自企业所处行业和竞争对手的数据,以及来自企业所处的其他外部环境中的各种数据。而商业智能能够辅助的业务经营决策既可以是作业层的,也可以是管理层和策略层的决策。
为了将数据转化为知识,需要利用数据仓库、线上分析处理(OLAP)工具和数据挖掘等技术。因此,从技术层面上讲,商业智能不是什么新技术,它只是ETL、数据仓库、OLAP、数据挖掘、数据展现等技术的综合运用。
把商业智能看成是一种解决方案应该比较恰当。商业智能的关键是从许多来自不同的企业运作系统的数据中提取出有用的数据并进行清理,以保证数据的正确性,然后经过抽取(Extraction)、转换(Transformation)和装载(Load),即ETL过程,合并到一个企业级的数据仓库里,从而得到企业数据的一个全局视图,在此基础上利用合适的查询和分析工具、数据挖掘工具、OLAP工具等对其进行分析和处理(这时信息变为辅助决策的知识),最后将知识呈现给管理者,为管理者的决策过程提供支持。
企业导入BI的优点
1.随机查询动态报表
2.掌握指标管理
3.随时线上分析处理
4.视觉化之企业仪表版
5.协助预测规划
导入BI的目的
1.促进企业决策流程(Facilitate the Business Decision-Making Process):BIS增进企业的资讯整合与资讯分析的能力,汇总公司内、外部的资料,整合成有效的决策资讯,让企业经理人大幅增进决策效率与改善决策品质。
......>>
问题八:数据库有哪几种? 常用的数据库:oracle、sqlserver、mysql、access、sybase 2、特点。 -oracle: 1.数据库安全性很高,很适合做大型数据库。支持多种系统平台(HPUX、SUNOS、OSF/1、VMS、 WINDOWS、WINDOWS/NT、OS/2)。 2.支持客户机/服务器体系结构及混合的体系结构(集中式、分布式、 客户机/服务器)。 -sqlserver: 1.真正的客户机/服务器体系结构。 2.图形化用户界面,使系统管理和数据库管理更加直观、简单。 3.具有很好的伸缩性,可跨越从运行Windows 95/98的膝上型电脑到运行Windows 2000的大型多处理器等多种平台使用。 -mysql: MySQL是一个开放源码的小型关系型数据库管理系统,开发者为瑞典MySQL AB公司,92HeZu网免费赠送MySQL。目前MySQL被广泛地应用在Internet上的中小型网站中。提供由于其体积小、速度快、总体拥有成本低,尤其是开放源码这一特点,许多中小型网站为了降低网站总体拥有成本而选择了MySQL作为网站数据库。 -access Access是一种桌面数据库,只适合数据量少的应用,在处理少量数据和单机访问的数据库时是很好的,效率也很高。 但是它的同时访问客户端不能多于4个。 -
问题九:什么是大数据 大数据是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。 大数据首先是指数据体量(volumes)?大,指代大型数据集,一般在10TB?规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。接着是数据处理速度(Velocity)快,在数据量非常庞大的情况下,也能够做到数据的实时处理。最后一个特点是指数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。
数据采集:ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
数据存取:关系数据库、NOSQL、SQL等。
基础架构:云存储、分布式文件存储等。
数据处理:自然语言处理(NLP,NaturalLanguageProcessing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机理解自然语言,所以自然语言处理又叫做自然语言理解(NLU,NaturalLanguage Understanding),也称为计算语言学(putational Linguistics。一方面它是语言信息处理的一个分支,另一方面它是人工智能(AI, Artificial Intelligence)的核心课题之一。
统计分析:假设检验、显着性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。
数据挖掘:分类 (Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)
模型预测:预测模型、机器学习、建模仿真。
结果呈现:云计算、标签云、关系图等。
要理解大数据这一概念,首先要从大入手,大是指数据规模,大数据一般指在10TB(1TB=1024GB)规模以上的数据量。大数据同过去的海量数据有所区别,其基本特征可以用4个V来总结(Vol-ume、Variety、Value和Veloc-ity),即体量大、多样性、价值密度低、速度快。
第一,数据体量巨大。从TB级别,跃升到PB级别。
第二,数据类型繁多,如前文提到的网络日志、视频、图片、地理位置信息,等等。
第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。
第四,处理速度快。1秒定律。最后这一点也是和传统的......>>
问题十:国内真正的大数据分析产品有哪些 国内的大数据公司还是做前端可视化展现的偏多,BAT算是真正做了大数据的,行业有硬性需求,别的行业跟不上也没办法,需求决定市场。
说说更通用的数据分析吧。
大数据分析也属于数据分析的一块,在实际应用中可以把数据分析工具分成两个维度:
第一维度:数据存储层――数据报表层――数据分析层――数据展现层
第二维度:用户级――部门级――企业级――BI级
1、数据存储层
数据存储设计到数据库的概念和数据库语言,这方面不一定要深钻研,但至少要理解数据的存储方式,数据的基本结构和数据类型。SQL查询语言必不可少,精通最好。可从常用的selece查询,update修改,delete删除,insert插入的基本结构和读取入手。
Access2003、Access07等,这是最基本的个人数据库,经常用于个人或部分基本的数据存储;MySQL数据库,这个对于部门级或者互联网的数据库应用是必要的,这个时候关键掌握数据库的库结构和SQL语言的数据查询能力。
SQL Server2005或更高版本,对中小企业,一些大型企业也可以采用SQL Server数据库,其实这个时候本身除了数据存储,也包括了数据报表和数据分析了,甚至数据挖掘工具都在其中了。
DB2,Oracle数据库都是大型数据库了,主要是企业级,特别是大型企业或者对数据海量存储需求的就是必须的了,一般大型数据库公司都提供非常好的数据整合应用平台。
BI级别,实际上这个不是数据库,而是建立在前面数据库基础上的,企业级应用的数据仓库。Data Warehouse,建立在DW机上的数据存储基本上都是商业智能平台,整合了各种数据分析,报表、分析和展现!BI级别的数据仓库结合BI产品也是近几年的大趋势。
2、报表层
企业存储了数据需要读取,需要展现,报表工具是最普遍应用的工具,尤其是在国内。传统报表解决的是展现问题,目前国内的帆软报表FineReport已经算在业内做到顶尖,是带着数据分析思想的报表,因其优异的接口开放功能、填报、表单功能,能够做到打通数据的进出,涵盖了早期商业智能的功能。
Tableau、FineBI之类,可分在报表层也可分为数据展现层。FineBI和Tableau同属于近年来非常棒的软件,可作为可视化数据分析软件,我常用FineBI从数据库中取数进行报表和可视化分析。相对而言,可视化Tableau更优,但FineBI又有另一种身份――商业智能,所以在大数据处理方面的能力更胜一筹。
3、数据分析层
这个层其实有很多分析工具,当然我们最常用的就是Excel,我经常用的就是统计分析和数据挖掘工具;
Excel软件,首先版本越高越好用这是肯定的;当然对excel来讲很多人只是掌握了5%Excel功能,Excel功能非常强大,甚至可以完成所有的统计分析工作!但是我也常说,有能力把Excel玩成统计工具不如专门学会统计软件;
SPSS软件:当前版本是18,名字也改成了PASW Statistics;我从3.0开始Dos环境下编程分析,到现在版本的变迁也可以看出SPSS社会科学统计软件包的变化,从重视医学、化学等开始越来越重视商业分析,现在已经成为了预测分析软件;
SAS软件:SAS相对SPSS其实功能更强大,SAS是平台化的,EM挖掘模块平台整合,相对来讲,SAS比较难学些,但如果掌握了SAS会更有价值,比如离散选择模型,抽样问题,正交实验设计等还是SAS比较好用,另外,SAS的学习材料比较多,也公开,会有收获的!
JMP分析:SAS的一个分析分支
XLstat:Excel的插件,可以完......>>
❺ 前端常用的框架有哪些
第一阶段:专业核心基础
阶段目标:
1. 熟练掌握HTML5、CSS3、Less、Sass、响应书布局、移动端开发。
2. 熟练运用HTML+CSS特性完成页面布局。
4. 熟练应用CSS3技术,动画、弹性盒模型设计。
5. 熟练完成移动端页面的设计。
6. 熟练运用所学知识仿制任意Web网站。
7. 能综合运用所学知识完成网页设计前端要学好必须每天坚持学习。为了方便大家的交流学习,也是创建了一个群每天都有分享学习方法和专业老师直播前端课程,这个扣裙首先是132 中间是667 最后是127 前端学习零基础想要学习的同学欢迎加入,如果只是凑热闹就不要来了!!!实战。
知识点:
1、Web前端开发环境,HTML常用标签,表单元素,Table布局,CSS样式表,DIV+CSS布局。熟练运用HTML和CSS样式属性完成页面的布局和美化,能够仿制任意网站的前端页面实现。
2、CSS3选择器、伪类、过渡、变换、动画、字体图标、弹性盒模型、响应式布局、移动端。熟练运用CSS3来开发网页、熟练开发移动端,整理网页开发技巧。
3、预编译css技术:less、sass基础知识、以及插件的运用、BootStrap源码分析。能够熟练使用 less、sass完成项目开发,深入了解BootStrap。
4、使用HTML、CSS、LESS、SASS等技术完成网页项目实战。通过项目掌握第一阶段html、css的内容、完成PC端页面设计和移动端页面设计。
第二阶段:Web后台技术
阶段目标:
1. 了解JavaScript的发展历史、掌握Node环境搭建及npm使用。
2. 熟练掌握JavaScript的基本数据类型和变量的概念。
3. 熟练掌握JavaScript中的运算符使用。
4. 深入理解分之结构语句和循环语句。
5. 熟练使用数组来完成各种练习。
6.熟悉es6的语法、熟练掌握JavaScript面向对象编程。
7.DOM和BOM实战练习和H5新特性和协议的学习。
知识点:
1、软件开发流程、算法、变量、数据类型、分之语句、循环语句、数组和函数。熟练运用JavaScript的知识完成各种练习。
2、JavaScript面向对象基础、异常处理机制、常见对象api,js的兼容性、ES6新特性。熟练掌握JavaScript面向对象的开发以及掌握es6中的重要内容。
3、BOM操作和DOM操作。熟练使用BOM的各种对象、熟练操作DOM的对象。
4、h5相关api、canvas、ajax、数据模拟、touch事件、mockjs。熟练使用所学知识来完成网站项目开发。
第三阶段:数据库和框架实战
阶段目标:
1. 综合运用Web前端技术进行页面布局与美化。
2. 综合运用Web前端开发框架进行Web系统开发。
3. 熟练掌握Mysql、Mongodb数据库的发开。
4. 熟练掌握vue.js、webpack、elementui等前端框技术。
5. 熟练运用Node.js开发后台应用程序。
6. 对Restful,Ajax,JSON,开发过程有深入的理解,掌握git的基本技能。
知识点:
1、数据库知识,范式,MySQL配置,命令,建库建表,数据的增删改查,mongodb数据库。深入理解数据库管理系统通用知识及MySQL数据库的使用与管理,为Node.js后台开发打下坚实基础。
2、模块系统,函数,路由,全局对象,文件系统,请求处理,Web模块,Express框架,MySQL数据库处理,RestfulAPI,文件上传等。熟练运用Node.js运行环境和后台开发框架完成Web系统的后台开发。
3、vue的组件、生命周期、路由、组件、前端工程化、webpack、elementui框架。Vue.js框架的基本使用有清晰的理解,能够运用Vue.js完成基础前端开发、熟练运用Vue.js框架的高级功能完成Web前端开发和组件开发,对MVVM模式有深刻理解。
4、需求分析,数据库设计,后台开发,使用vue、node完成pc和移动端整站开发。于Node.js+Vue.js+Webpack+Mysql+Mongodb+Git,实现整站项目完整功能并上线发布。
第四阶段:移动端和微信实战
阶段目标:
1.熟练掌握React.js框架,熟练使用React.js完成开发。
2.掌握移动端开发原理,理解原生开发和混合开发。
3.熟练使用react-native和Flutter框架完成移动端开发。
4.掌握微信小程序以及了解支付宝小程序的开发。
5.完成大型电商项目开发。
知识点:
1、React面向组件编程、表单数据、组件通信、监听、声明周期、路由、Rex基本概念。练使用react完成项目开发、掌握Rex中的异步解决方案Saga。
2、react-native、开发工具、视图与渲染、api操作、Flutter环境搭建、路由、ListView组件、网络请求、打包。练掌握react-native和Flutter框架,并分别使用react-native和Flutter分别能开发移动端项目。
3、微信小程序基本介绍、开发工具、视图与渲染、api操作、支付宝小程序的入门和api学习。掌握微信小程序开发了解支付宝小程序。
4、大型购物网站实战,整个项目前后端分离开发;整个项目分为四部分:PC端网页、移动端APP、小程序、后台管理。团队协作开发,使用git进行版本控制。目期间可以扩展Three.js 、TypeScript。
❻ Web前端主要包括哪些技术小白求解答
Web前端技术主要包括HTML5、CSS3、Less、Sass、响应式布局、移动端开发、以及Ps设计等,更高级的前端开发人员还需要掌握JavaScript 语言、Mysql、Mongodb数据库开发、vue.js、webpack、elementui等前端框架技术。蜗牛学院这里也给大家整理了一份web前端学习路线,希望对想要学习web前端的小白有所帮助。
第一阶段:专业核心基础
阶段目标:
1. 熟练掌握HTML5、CSS3、Less、Sass、响应书布局、移动端开发。
2. 熟练运用HTML+CSS特性完成页面布局。
4. 熟练应用CSS3技术,动画、弹性盒模型设计。
5. 熟练完成移动端页面的设计。
6. 熟练运用所学知识仿制任意Web网站。
7. 能综合运用所学知识完成网页设计实战。
知识点:
1、Web前端开发环境,HTML常用标签,表单元素,Table布局,CSS样式表,DIV+CSS布局。熟练运用HTML和CSS样式属性完成页面的布局和美化,能够仿制任意网站的前端页面实现。
2、CSS3选择器、伪类、过渡、变换、动画、字体图标、弹性盒模型、响应式布局、移动端。熟练运用CSS3来开发网页、熟练开发移动端,整理网页开发技巧。
3、预编译css技术:less、sass基础知识、以及插件的运用、BootStrap源码分析。能够熟练使用 less、sass完成项目开发,深入了解BootStrap。
4、使用HTML、CSS、LESS、SASS等技术完成网页项目实战。通过项目掌握第一阶段html、css的内容、完成PC端页面设计和移动端页面设计。
第二阶段:Web后台技术
阶段目标:
1. 了解JavaScript的发展历史、掌握Node环境搭建及npm使用。
2. 熟练掌握JavaScript的基本数据类型和变量的概念。
3. 熟练掌握JavaScript中的运算符使用。
4. 深入理解分之结构语句和循环语句。
5. 熟练使用数组来完成各种练习。
6.熟悉es6的语法、熟练掌握JavaScript面向对象编程。
7.DOM和BOM实战练习和H5新特性和协议的学习。
知识点:
1、软件开发流程、算法、变量、数据类型、分之语句、循环语句、数组和函数。熟练运用JavaScript的知识完成各种练习。
2、JavaScript面向对象基础、异常处理机制、常见对象api,js的兼容性、ES6新特性。熟练掌握JavaScript面向对象的开发以及掌握es6中的重要内容。
3、BOM操作和DOM操作。熟练使用BOM的各种对象、熟练操作DOM的对象。
4、h5相关api、canvas、ajax、数据模拟、touch事件、mockjs。熟练使用所学知识来完成网站项目开发。
第三阶段:数据库和框架实战
阶段目标:
1. 综合运用Web前端技术进行页面布局与美化。
2. 综合运用Web前端开发框架进行Web系统开发。
3. 熟练掌握Mysql、Mongodb数据库的发开。
4. 熟练掌握vue.js、webpack、elementui等前端框技术。
5. 熟练运用Node.js开发后台应用程序。
6. 对Restful,Ajax,JSON,开发过程有深入的理解,掌握git的基本技能。
知识点:
1、数据库知识,范式,MySQL配置,命令,建库建表,数据的增删改查,mongodb数据库。深入理解数据库管理系统通用知识及MySQL数据库的使用与管理,为Node.js后台开发打下坚实基础。
2、模块系统,函数,路由,全局对象,文件系统,请求处理,Web模块,Express框架,MySQL数据库处理,RestfulAPI,文件上传等。熟练运用Node.js运行环境和后台开发框架完成Web系统的后台开发。
3、vue的组件、生命周期、路由、组件、前端工程化、webpack、elementui框架。Vue.js框架的基本使用有清晰的理解,能够运用Vue.js完成基础前端开发、熟练运用Vue.js框架的高级功能完成Web前端开发和组件开发,对MVVM模式有深刻理解。
4、需求分析,数据库设计,后台开发,使用vue、node完成pc和移动端整站开发。于Node.js+Vue.js+Webpack+Mysql+Mongodb+Git,实现整站项目完整功能并上线发布。
第四阶段:移动端和微信实战
阶段目标:
1.熟练掌握React.js框架,熟练使用React.js完成开发。
2.掌握移动端开发原理,理解原生开发和混合开发。
3.熟练使用react-native和Flutter框架完成移动端开发。
4.掌握微信小程序以及了解支付宝小程序的开发。
5.完成大型电商项目开发。
知识点:
1、React面向组件编程、表单数据、组件通信、监听、声明周期、路由、Rex基本概念。练使用react完成项目开发、掌握Rex中的异步解决方案Saga。
2、react-native、开发工具、视图与渲染、api操作、Flutter环境搭建、路由、ListView组件、网络请求、打包。练掌握react-native和Flutter框架,并分别使用react-native和Flutter分别能开发移动端项目。
3、微信小程序基本介绍、开发工具、视图与渲染、api操作、支付宝小程序的入门和api学习。掌握微信小程序开发了解支付宝小程序。
4、大型购物网站实战,整个项目前后端分离开发;整个项目分为四部分:PC端网页、移动端APP、小程序、后台管理。团队协作开发,使用git进行版本控制。目期间可以扩展Three.js 、TypeScript。
❼ 前端开发用什么数据库
数据库一般是后端开发负责,很多公司前端现在也在负责数据库等和后端结合,向全栈开发方向发展。
MongoDB
MongoDB是一个基于分布式文件存储的数据库。由C语言编写。旨在为WEB应用提供可扩展的塌祥高性能数据存储解决方案。MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。相比较于MySql,它省去了建表等繁琐的操作,可以实现类似于js的对象操作。
MySQL
MySQL的开放式的架构使得用户选择性很强,同时社区开发与维护人数众多,其功能比较稳定,性能卓越,且在遵守GPL协议的前提下,可以免费使用与修改,也为MySQL的推广与使用带来了更多利好。在MySQL成长与发展过程中,支持的功能逐渐增多,性能也不断提高,对平台支持也越来越多。
MySQL是一种关系型数据库管理系统关系型数据库的特点是将数据保存在不同的表中,在将这些表放入不同的数据库中,而不是将所有数据统一放在一个大仓库里,这样的设计增加了MySQL的读取速度,灵活性可管理性也得到了很大提高。访问以及管理MySQL数据库的最常用标准化语言为SQL结构化查询语言。
绝大多数的使用Linux操作系统的大中小互联网网站都在使用MySQL作为其后端的数据库存储,从大型BAT门户,到电商平台,分类门户等无一例外都使用MySQL数据库。那么,MySQL数据库到底那些优势和特点,让大家义无反顾的选择它呢?
原因可能有以下几点:
1.MySQL性能卓越,服务稳定,很少出现异常宕机2.MySQL开放源代码且无版权制约,自主性及使用成本低3.MySQL历史悠久,社区及用户非常活跃,遇到问题,可以寻求帮助4.MySQL软件体积小,安装使用简单,并且易于维护,安装及维护成本低5.MySQL品牌口碑较应,使誉键得企业无需考虑就直接庆衫巧用之,LAMP,LEMP流行架构。6.MySQL支持多种操作语言,提供多种API接口,支持多种开发语言,特别对流行的PHP语言有很好的支持。