Ⅰ 什么是财务数据,什么是业务数据,二者有什么区别
他们的区别就是一个是整理日常数据和一个是整理工作数据。业务数据就是各种繁杂的日常工作记录数据,财务数据是对各种日常数据的归集整理和统计。财务数据是反映企业财务状况与经营成果的内容。
主要包括以下内容:
1、财务账簿数据及报表数据,该类财务数据是根据真实的企业经营财务信息统计核算,然后进行登记的数据;报表数据主要包括资产负债表数据、损益表数据、现金流量表数据等,这属于企业的基础财务数据。
2、企业的各项指标分析数据,该类数据是通过数学模型或对应的公式所计算得出的数据,例如用于企业各部门的责任考核数据、用于分析企业各项指标的财务管理数据以及用于投资决策的决策分析数据等。
业务数据定义分人公司应高度重视分人业务导致的责任累积,建立有效的责任W-积识别和管控的机制和方法。责任累积类型有分入业务与直接保险业务间的责任累积和分人业务间的责任累积两种。
造成责任累积的主要原因有:
(1)分人业务与保险公司参与共保的直接业务形成责任累积;
(2临时分保分人业务与合约分人业务间形成责任累积;
(3)多渠道临时分保分人业务间形成责任w积;(4)作为再保险接受人与多家保险公司建立分保合约.多个分出公司均参与的共保业务形成贵任累积。
其中,业务数据分人合约中分出人共保业务和分入业务的合约使用悄况是导致合约责任累积的主要原因。分人公司应特别关注分入合约中共保业务及分人业务使用再保险合约的情况,谨慎地评估由此可能形成的单一危险单位、单一区域、巨灾风险等责任累积。
Ⅱ 大数据的四大特征
1、海量性
例如,IDC 最近的报告预测称,到2020 年,全球数据量将扩大50 倍。目前,大数据的规模尚是一个不断变化的指标,单一数据集的规模范围从几十TB到数PB不等。
2、多样性
数据多样性的增加主要是由于新型多结构数据,以及包括网络日志、社交媒体、互联网搜索、手机通话记录及传感器网络等数据类型造成。
3、高速性
高速描述的是数据被创建和移动的速度。在高速网络时代,通过基于实现软件性能优化的高速电脑处理器和服务器,创建实时数据流已成为流行趋势。企业不仅需要了解如何快速创建数据,还必须知道如何快速处理、分析并返回给用户,以满足他们的实时需求。
4、易变性
大数据具有多层结构,这意味着大数据会呈现出多变的形式和类型。相较传统的业务数据,大数据存在不规则和模糊不清的特性,造成很难甚至无法使用传统的应用软件进行分析。
Ⅲ 大数据 特点
大数据(big data)是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。大数据有五大特点,即大量(Volume)、高速(Velocity)、多样(Variety)、低价值密度(Value)、真实性(Veracity)。它并没有统计学的抽样方法,只是观察和追踪发生的事情。 大数据的用法倾向于预测分析、用户行为分析或某些其他高级数据分析方法的使用。
适用领域
人工智能,BI,工业4.0,云计算,物联网,互联网+
特点
大量,高速、多样、价值、真实性
提出者
维克托·迈尔-舍恩伯格、肯尼斯·库
大数据与云计算的关系
对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。
麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。分析师团队认为,大数据(Big data)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。
大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
最小的基本单位是bit,按顺序给出所有单位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。
Ⅳ 数据的基本特征
数据的基本特征:种类、速度、可变性、真实性、复杂性。
大数据包括结构化、半结构化和非结构化数据,非结构化数据越来越成为数据的主要部分。据IDC的调查报告显示:企业中80%的数据都是非结构化数据,这些数据每年都按指数增长60%。大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本看起来很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。
第一层面是理论,理论是认知的必经途径,也是被广泛认同和传播的基线。在这里从大数据的特征定义理解行业对大数据的整体描绘和定性,从对大数据价值的探讨来深入解析大数据的珍贵所在,洞悉大数据的发展趋势,从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。第二层面是技术,技术是大数据价值体现的手段和前进的基石。在这里分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。第三层面是实践,实践是大数据的最终价值体现。在这里分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。
Ⅳ 数据有哪些特征
特征一致性:针对企业内部不同的信息系统之间,要求主数据的关键特征在各个不用应用和系统中保持高度一致;
识别唯一性:在一个系统、一个平台,甚至一个企业范围内,同一主数据实体要求具有唯一的数据标识,即数据编码;
长期有效性:对主数据在系统中的存储保持长期有效,不建议物理删除;
业务稳定性:主数据本身的属性不会随业务过程的变化而被修改,可以参考融融网上更详细的案例说明。
Ⅵ 数据的特点有哪些
数据要素的鲜明特点包括可共享可复制,无限增长。数据资源具有可复制、可共享、无限增长和和供给的秉性,打破了自然资源有限供给对增长的制约。
数据要素是推动经济增长的新引擎:数据要素作为数字经济最核心的资源,具有可共享、可复制、可无限供给等特点,这些特点打破土地、资本等传统生产要素有限供给对经济增长推动作用哗弊的制约。与土地、资本等传统生产要素相比,数据要素对推动经济增长具有倍增效应
统计显示,2019年我国数字经济总体规模达到35万亿元,占GDP比重超过三分之一。特别是新冠肺炎疫情暴发后,数字平台在降低疫情冲击方面体现出独特优势,在物资流转、复工复产、稳定就业等方面发挥了重要作用
以在线办公、医疗、教育、餐饮等为代表的数字经济增长迅猛。比如,以互联网医疗为代表的无接触式医疗呈现爆发式增长,疫情期间京东健康的日均在线问诊量达到10万人次,阿里健康每小时的咨询量近3000人次。
Ⅶ 数据质量的主要特征
1. 协作性。 业务部门和IT部门为数据质量共同担责,业务分析师、数据管理员、IT开发人员和管理员各自将具有明确分工和适于其独特技能和视角的技术。
2. 前瞻性。业务部门和IT部门认识到所有机构都会不同程度地受到劣质数据的影响,有必要再劣质数据严重影响到企业业绩之前,积极探查数据以发现和纠正问题。
3. 可重复使用。有关数据探查与清晰的业务规则可被重复运用于任意数量的应用程序,而不论数据时内部预置、在合作伙伴处还是在云环境中。
4. 普遍深入性。数据质量方案将扩展至所有相关人员、数据领域、项目和应用程序,而不论数据是内部预置、在合作伙伴处还是在云环境中。
Ⅷ 大数据的特性
1、数据类型繁多:对数据的处理能力提出了更高的要求,例如网络日志、音频、视频、图片、地理位置信息等等多类型的数据。
2、处理速度快和时效性要求高:是区分于传统的数据挖掘,也这是大数据最显着的特征。
3、数据价值密度相对较低:随着物联网的广泛应用,无处不在的信息感知和信息海量,但是价值密度却较低。大数据时代亟待解决的难题是:如何通过强大的机器算法可以更迅速地完成数据的价值“提纯”。
二、大数据的四大特点
1、海量性:有IDC 最近的报告预测称,在2020 年,将会扩大50 倍的全球数据量。现在来看,大数据的规模一直是一个不断变化的指标,单一数据集的规模范围可以从几十TB到数PB不等。也就是说,存储1 PB数据是需要两万台配备50GB硬盘的个人电脑。而且,很多你意想不到的来源都能产生数据。
2、高速性:指数据被创建和移动的速度。在高速网络时代,创建实时数据流成为了流行趋势,主要是通过基于实现软件性能优化的高速电脑处理器和服务器。企业一般需了解怎么快速创建数据,还需知道怎么快速处理、分析并返回给用户,来满足他们的一些需求。
3、多样性:由于新型多结构数据,导致数据多样性的增加。还包括网络日志、社交媒体、手机通话记录、互联网搜索及传感器网络等数据类型造成。
4、易变性:大数据会呈现出多变的形式和类型,是由于大数据具有多层结构,相比传统的业务数据,大数据有不规则和模糊不清的特性,导致很难甚至不能使用传统的应用软件来分析。随时间演变传统业务数据已拥有标准的格式,能够被标准的商务智能软件识别。现在来看,要处理并从各种形式呈现的复杂数据中挖掘价值,成为了企业面临的挑战。
Ⅸ 数据的特征
大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》 中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。(9)业务数据有哪些特性扩展阅读:一、具体特征容量(Volume):数据的大小决定所考虑的数据的价值和潜在的信息。种类(Variety):数据类型的多样性。速度(Velocity):指获得数据的速度。可变性(Variability):妨碍了处理和有效地管理数据的过程。真实性(Veracity):数据的质量。复杂性(Complexity):数据量巨大,来源多渠道。价值(value):合理运用大数据,以低成本创造高价值。二、运用洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。麻省理工学院利用手机定位数据和交通数据建立城市规划。梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。 医疗行业早就遇到了海量数据和非结构化数据的挑战,而近年来很多国家都在积极推进医疗信息化发展,这使得很多医疗机构有资金来做大数据分析。