导航:首页 > 数据处理 > 二维数据离散程度指标有哪些

二维数据离散程度指标有哪些

发布时间:2023-06-06 11:18:13

㈠ 描述数据集中趋势和离散程度的指标分别有哪些各自的适用情况是什么

集中趋势指标:算术均数,几何均数,中位数和百分位数。

集中趋势适用情况:对称分布或偏度不大的资料,尤其适合正态分布资料。

离散趋势指标:极差,方差,标准差,四分位数间距。

离散趋势适用情况:均数相差不大,单位相同的资料。

在统计学中,集中趋势或中央趋势,在口语上也经常被称为平均,表示一个机率分布的中间值。最常见的几种集中趋势包括算数平均数、中位数及众数。集中趋势可以由有限的数组中或理论上的机率分配中求得。

计量资料的频数分布有集中趋势和离散趋势两个主要特征。仅仅用集中趋势来描述数据的分布特征是不够的,只有把两者结合起来,才能全面地认识事物。我们经常会碰到平均数相同的两组数据其离散程度可以是不同的。

(1)二维数据离散程度指标有哪些扩展阅读:

各指标计算方法:

极差又称全距,是指一组数据的观察值中的最大值和最小值之差。

极差的计算较简单,但是它只考虑了数据中的最大值和最小值,而忽略了全部观察值之间的差异。两组数据的最大值和最小值可能相同,于是它们的极差相等,但是离散的程度可能相当不一致。

平均差是指一组数据中的各数据对平均数的离差绝对值的平均数。一组数据中的各数据对平均数的离差有正有负,其和为零,因此平均差必须用离差的绝对值来计算。平

平均差用绝对值来度量,虽然避免了正负离差的相互抵消,但不便于运算。一般情况下,可用方差来度量一组数据的离散性。方差通常用字母σ2来表示。

算术平均数:算术平均数就是观察值的总和除以观察值个数的商,是集中趋势测定中最重要的一种,它是所有平均数中应用最广泛的平均数。算术平均数分为简单算术平均数和加权算术平均数。

调和平均数:调和平均数可以看成是变量χ的倒数的算术平均数的倒数,故有时也被称为“倒数平均数”。调和平均数分为简单调和平均数和加权调和平均数。

㈡ 什么是数据的离散程度常用的测度离散程度的指标有哪些

离散程度,外文名Measures of Dispersion,是指通过随机地观测变量各个取值之间的差异程度,用来衡量风险大小的指标。

指标:

1、极差

极差又称全距,是观测变量的最大取值与最小取值之间的离差,也就是观测变量的最大观测值与最小观测值之间的区间跨度。极差的计算公式为:R=Max(xi) −Min(xi)

2、平均差

平均差是总体各单位标志对其算术平均数的离差绝对值的算术平均数。它综合反映了总体各单位标志值的变动程度。平均差越大,则表示标志变动度越大,反之则表示标志变动度越小。

3、标准差

标准差是随机变量各个取值偏差平方的平均数的算术平方根,是最常用的反映随机变量分布离散程度的指标。标准差既可以根据样本数据计算,也可以根据观测变量的理论分布计算,分别称为样本标准差和总体标准差。

(2)二维数据离散程度指标有哪些扩展阅读

离散程度的测度意义:

1、通过对随机变量取值之间离散程度的测定,可以反映各个观测个体之间的差异大小,从而也就可以反映分布中心的指标对各个观测变量值代表性的高低。

2、通过对随机变量取值之间离散程度的测定,可以反映随机变量次数分布密度曲线的瘦俏或矮胖程度。

不常见的指标:

四分位数:是统计学中分位数的一种,即把所有数据由小到大排列并分成四等份,处于三个分割点位置的数据就是四分位数,其中,中位数是比较常用的评价指标。

(1)第一四分位数(Q1),又称“下四分位数”,等于该样本中所有数据由小到大排列后第25%的数据;

(2)第二四分位数(Q2),又称“中位数”,等于该样本中所有数据由小到大排列后第50%数据;

(3)第三四分位数(Q3),又称“上四分位数”,等于该样本中所有数据由小到大排列后第75%的数据;

(4)第三四分位数与第一四分位数的差距又称四分位距。

㈢ 数据的集中趋势和离散趋势测度的指标有哪些,各自的表达式是什么

集中趋势测度的指标有算术均数,几何均数,中位数和百分位数。表达式是平均数的概念,它能够对总体的某一特征具有代表性,表明所研究的舆论现象在一定时间、空间条件下的共同性质和一般水平。

离散趋势测度的指标有全距、异众比率、四分位差、平均差、标准差以及离散系数,其中标准差最重要。表达式是各个变量值远离其中心值的程度,是数据分布的另一个重要特征。

(3)二维数据离散程度指标有哪些扩展阅读:

离散趋势标准差:

平均差用绝对值来度量,虽然避免了正负离差的相互抵消,但不便于运算。一般情况下,可用方差来度量一组数据的离散性。方差通常用字母σ2来表示。

为了使统计量的单位同观察值的单位相一致,通常将方差开平方,即得到标准差σ,标准差也称为均方差。由定义可知,方差和标准差所反映的是一组数据对其均值为代表的中心的某种偏离程度。从定义可知,标准差(或方差)较小的分布一定是比较集中在均值附近的,反之则是比较分散的。

标准差的缺点是计算起来比较麻烦。标准差也是根据全部数据来计算的,但是它也会受到极端值的影响。标准差的计算要比平均差方便,因此,标准差是描述数据离散趋势最常用的统计量。

在统计中我们通常用sigma^2和sigma分别表示总体的方差和标准差。当总体中的个体数很大,希望通过抽样,用样本标准差来估计总体的标准差时,就需要计算样本的方差和标准差。仅需要对总体方差和标准差的计算公式作一些调整即可。

标准差的概念在统计上具有重要的作用。对于任意一个总体,在确定了标准差以后,就可以精确地确定总体中的单位落在平均数两侧某个范围内的频率大小。对于正态分布的情形,在下一小节中,我们将介绍数据落在某个特定范围内概率的大小及其意义。

㈣ 离散程度的指标有哪些

离散程度的指标有极差,四分位数间距,标准差,方差,变异系数。

四分位数间距:是第75百分位数与第25百分位数之差,用符号Q表示,即Q=P75-P25.它反映了一组观察值按从小到大的顺序排列后,中间一半观察值的波动范围。四分位数间距常用于描述偏态分布资料,一端或两端无确切值或分布不明确资料的变异程度。

标准差:方差的单位是观察值原始单位的平方,在实际工作中使用不便,故将方差开算术平方根得到标准差。标准差是描述对称分布,特别是正态分布或近似正态分布资料变异程度的指标。

方差:描述对称分布,特别是正态分布或近似正态分布资料变异程度的指标。在实际工作中总体方差往往是未知的,常用样本方差来估计。

变异系数:亦称离散系数,简记为CV,为标准差与均数之比。极差、四分位数间距和标准差都有单位,且与观察值的原始单位相同;而变异系数为相对数,没有单位,便于计量单位不同或均数相差悬殊的多组资料间变异程度的比较。

阅读全文

与二维数据离散程度指标有哪些相关的资料

热点内容
怎么做麦吉丽的代理 浏览:497
产品资质证书是什么 浏览:511
百度文库为什么下载的是数据 浏览:810
快递信息如何查商家 浏览:773
铺面信息简介怎么写 浏览:561
理财基金介绍产品怎么买 浏览:41
代理网店需要哪些手续 浏览:273
怎么样发信息呢 浏览:236
罗布乐思技术困难怎么回事 浏览:822
推荐理财产品客户问为什么相信你 浏览:470
贵阳药膏批发市场在哪里 浏览:384
医疗小程序做什么 浏览:670
潍坊去哪里考察市场 浏览:777
手机如何发信息开通粉钻 浏览:29
如何研究交易技术 浏览:444
sql数据选项卡在哪里 浏览:886
雇佣别人做微信小程序多少钱 浏览:200
恒泰证券怎么开通转债交易 浏览:539
县城没有顺丰快递代理怎么样 浏览:177
空分技术学院有什么专业 浏览:981