㈠ 数据中心的盈利模式是什么
数据中心咋赚钱
批发零售模式,电信运营商出面建设,专业三方实际运营,类似批发和零售模式,电信运营商建设好的数据中心批发给第三方运营,第三方在零售给各个用户,获取租金差价;
自建自营模式,云计算大企业,比如亚马逊云、阿里云、电信云,建设好数据中心,直接对客户提供服务器、网络贷款、服务器等服务;
租房模式,直接出租数据中心面积给客户,客户自己购买设备,自己运维,缴纳房屋租金就好;
定制化,直接为政府或者大型企业定制的数据中心,单一稳定客户,类似融资租赁模式。
数据中心门槛
资本门槛,重资产行业,投资回收期长,8-10年才可实现盈亏平衡;
技术门槛高,数据中心是一个20年左右的长周期投资项目,投资之初就要对技术走势提前进行判断,一旦建成,很难再调整固有架构;
运营门槛高,建设一个数据中心容易,保持长期稳定运营很难,难度表现在数据的稳定性安全性,也表现在提供良好的服务,持续盈利能力;
选址建设门槛,选址上需要考虑水文地质变化情况,不能是灾害频发地区,保证数据的安全,审批手续也异常复杂需要工信部、国土局、电力局、电信运营商等专业部门审批。
数据中心与传统商业地产融资异同
传统商业地产就是建设好之后,通过商业出租得到本金回报,万达的商业中心本金回报,在除去融资成本之后,大约在1%;
传统商业地产的另一特征是客户分散,保证了租金的稳定;
数据中心的运营模式和商业地产差不多,同样是一次投入,租金回收,客户分散,收益稳定。
传统商业地产可用的融资手段,在数据中心融资中都可创新性使用,包括ABS,包括REITs 模式,
总结
随着新基建的推出数据中心成为新热点,因其高门槛形成了较强的行业壁垒,目前还是电信运营商为主的模式,不过互联网公司因为掌握终端用户,不想再被第三方赚取差价,采用自建模式也在增多,其中包括阿里、腾讯自建模式都是百亿以上的投资,
㈡ 大数据是如何赚钱和亏钱的
大数据是如何赚钱和亏钱的_数据分析师考试
大数据无疑是时下炙手可热的流行词汇,然而,我们鲜少看到大数据如何带来收益,以及如何实现的例子,这是怎么回事呢?
多年来,在经历了几个通信和投行的大数据相关早期实施项目后,我认为这个新兴技术的收益主要在于:实现对复杂系统更为精准的剖析,例如股票市场或供应链。(投行成为最早一批应用大数据分析的行业之一,可谓毫不意外。对利用技术提升效率,创造效益更为敏锐的商业模式,往往也是更赚钱的。)
在投行的日常工作中,为了精准地选择投资机会、选购股票,有大量对文档处理的需求,例如新闻简报,财务报表。如果人工进行,工作量过于庞大。因此助理分析师们往往简化他们的预测分析过程,并使用电子表格来完成绝大部分工作。通过大数据技术,投行可以整合各种信息,减少可能的(简化分析带来的)风险,从整体上带来更优越的分析和预测能力。
公司如何通过大数据赚钱?通过大数据平台,股票经纪和投资经理们可以聚合各种来源的非格式化数据,辅助判断哪些公司值得投资。所谓‘非格式化数据’包括如公司新闻,产品评论,供应商数据,价格变化,将这些信息以所谓“大数据”形式整合,通过建模,帮助股票经纪决策买入或售出股票。
有些采用如上方式进行投资预测的公司,很注重节约实施成本,例如使用云平台(如AWS),先从很小数量的服务器开始,随着获益增长,逐步提高投入。一位我认识的分析师,从一家大投行离职创业后,在不到六个月的时间内,仅仅使用非常有限的投入,创立了一个盈利良好的大数据交易系统。
即便在传统制造领域,大数据仍然可以提升预测能力。我曾经担任过顾问的某欧洲一线汽车制造厂商,通过建立一个钢材交易成本的分析系统,选择更好的时机,以更优价格买入原材料。这个系统由开源Java框架Hadoop创建,整合了多个供应商的共计15Tb的数据,在两年内为该公司节省了1600万美元。
这个项目的成功主要有两个原因:首先,公司有足够的信息为所有的供应商建模;其次,该项目节省的原材料成本超过了实施这个项目的费用。
公司为何因为大数据亏钱?然而,并非每个大数据项目都会这样成功。公司在大数据项目上以亏损告终的概率,有时和成功的概率相差无几。大数据项目失败的早期症状有很多种,最常见的问题如:
步子迈太大大数据并不需要一笔巨大的预算,如果怀着巨大的投入将带来巨大回报的预期开始一个大数据项目,往往会产生问题。在正式开始前,明智的做法是,尝试用有限的投入,在小范围内测试这个技术是否确实能带来预期的收益。按这样的节奏,一个项目可以按部就班地随着收益逐步提高,而逐步扩大投入规模,确保收益始终大于投入。
低估人力投入在开始实施一个大数据系统前,问自己一个简单的问题:这个项目是否可以不需要持续的人工支持来运作?如果答案是,需要人工支持,那么建议停止项目。建立这样一个项目往往意味着百万级的损失,无法在有利润情况下保持维护和运行。
迷信自然语言处理大数据有个经常听到的功能是,通过自然语言处理,将各种领域的各种数据处理成直接可读可理解的形式。这听起来确实很赞,但是在实际应用中,往往不尽如人意。自然语言处理仍然存在许多妨碍应用的限制,主要由于人工智能的发展还不够——而且在可见的10年内,这个情况可能不会有很大改观。
现代大数据项目具备巨大的节约成本的潜力,其效果对于过去的数据处理方式而言有如童话。但需要谨记的是,在投入时间和资源到大数据项目之前,首先要确认你的项目是收益大于成本的。只有傻瓜才会匆匆对一个点子一见钟情并倾其所有。
以上是小编为大家分享的关于大数据是如何赚钱和亏钱的的相关内容,更多信息可以关注环球青藤分享更多干货
㈢ “大数据”要这样用才赚钱!
“大数据”要这样用才赚钱!
大数据的生意经其实很简单,就是收入增加,花费减少;就是增加客户,提高客户体验,提高资金回报的杠杆率;大数据应用成熟之后,大数据可以预测商业未来,发现新的商业机会。
一石激起千层浪,国务院发布的2015 第50号文《促进大数据发展行动纲要》刷满了朋友圈,特别是其中提到了大力推动政府部门数据共享,稳步推动公共数据资源开放。2017年底前形成跨部门数据资源共享格局,到2018年实现统一共享平台全覆盖和数据共享及交换。2020年培育10家国际领先的大数据核心龙头企业,500家大数据应用、服务和产品制造企业。
众所周知,大数据商业价值巨大。但是中国大数据的商业价值还没有被充分挖掘。主要的困难在大数据的分散,具有价值的数据大部分集中在在政府内部,垄断国企业,以及互联网巨头之中。分散的数据无法帮助企业拿到具有价值的信息,无法实现大数据的商业变现。政府开放数据,以及大数据交易市场的建立是中国大数据商业价值应用的重中之重。
另外大数据的应用场景和大数据隐私问题,也是大数据商业应用功能的两大问题,不知道数据应用场景,就无法寻找具有价值的数据,就无让数据发挥作用,大数据的应用就会停留在解决数据采集、处理、存储等大数据1.0时代的低级阶段,无法实现大数据商业变现,无法激励企业进一步投资大数据,无法形成数据价值应用的生态循环。大数据隐私问题是所有企业不能回避的问题,到底何种数据可以进行交换,何种数据可以采集和变现,何种数据可以作为商品在市场流通,这些问题既影响个人隐私保护,又影响到企业购买数据产品的积极性,同时也影响了数据企业的发展。
中国大数据企业分为三类,一类是大数据技术公司,为企业提供大数据平台搭建,技术咨询,大数据计算和存储的产品,例如华为、亚信、浪潮等传统IT公司。一类是大数据服务公司,为企业提供基于大数据技术的服务、平台、产品。包括为企业搭建大数据挖掘工具,搜索引擎,分析引擎等大数据处理平台,大数据清洗和挖掘服务例如明略科技,ADMaster,百分点。最后一类是提供数据产品的大数据公司,他们拥有数据,加工生成具有价值的数据,为市场提供标准的数据产品。例如芝麻信用,TalkingData,九次方,星图数据等。
中国大数据市场的数据来源有四种,一种是通过网络爬虫采集的外部数据,大多数提供舆情分析的公司就是通过爬虫技术来进行数据采集的。例如海量数据。一种是提供SaaS服务得到的数据,例如Talkindata。另外一种是靠和运营商或政府合作,通过数据挖掘得到的数据,例如亚信和九次方。最后一种就是自身平台产生的数据(电商、旅游、媒体等互联网企业),包括BAT以及较大的一些互联网公司如360、当当、唯品会、聚美优品、携程、今日头条等。
一、开放数据的价值
开放数据就是政府向社会公布自己所拥有的,并经过脱敏的数据。包括天气数据、GPS数据、金融数据、教育数据、交通数据、能源数据、医疗数据、政府投资数据、农业数据等。这些原始数据本身并没有明显的商业价值,但经过一些公司加工之后,可以产生巨大的商业价值。
开放数据在美国有几千亿美金的市场,包括300亿美金的气象数据,900亿美金的GPS数据,上千亿美金的医疗数据。但政府开放的数据是原始数据,数据自身的商业价值并不大,需要专业的公司对数据进收集,清洗,挖掘,展现,从而形成具有商业价值的数据。在美国有很多公司是依靠加工政府开放数据而实现其商业价值的,例如处理天气数据的Zillow公司,the weather channel 公司,以及处理GPS数据的Garmin公司,它们的总市值已经超过了一百亿美金。
1 、政府开放数据的主要范围
a政府收集和制造的科学数据。例如天气数据,政府资助的医疗研究数据。这些数据都可以作为公共资源进行使用。
b 政府运行的数据,例如政府支出或大型项目运行数据。开放数据一方面可以增加民众对政府的信任,另一个方面可以给一些公司带来商业机遇。
c监管行业的数据。这些数据由企业提供给政府,并且经过政府二次加工。这些宏观数据对于产业规划,企业的投资战略都有很大影响。
2、 中国开放数据之路的挑战
a 国家对数据治理还没有完成。很多数据没有集中管理,还是处于信息孤岛状态,这些都是开放数据需要解决的问题。数据治理投资巨大,时间周期较长,都是巨大的挑战。
b 一些开放数据还不是电子形式。例如医疗数据和教育数据,在一些地区还处于纸质记录状态,没有形成电子档案。这些数据的电子化也是一个较大的挑战。
c 开放数据的脱敏和整合将是一项重大的挑战。特别是国有企业的数据,哪些数据可以公开,哪些数据需要脱敏,如何整合各个地方的数据,这些都是一个挑战
d 大数据服务公司和大数据人才匮乏。由于大数据市场刚刚开始,市场上缺少大数据人才和大数据服务公司,公开的数据短时间可能很难产生商业价值,这会影响政府和企业开放数据的积极性,不利于形成良性的大数据商业市场,会影响开放数据项目的持续发展。
3、有关开放数据一些建议
人类社会即将进入数字时代,开放数据将会是巨大的生产力。政府已经认识到了开放数据的价值,会持续推动政府和国企的数据开放。即使短时间内开放数据的投资看不到商业价值,但其未来经济价值会促使政府坚持开放数据的政策,持续进行投资。就像中国的高速公路,开放数据是另外一条信息高速公路,将数据转化为资产,转化为巨大的社会生产力,帮助企业实现更大的商业价值。
对于数据拥有者的政府,需要在保障公共安全和个人隐私的前提下,完成数据治理和数据整合,逐步向社会开放数据,并提高数据质量,公开面向所有个人和企业,有效利用政府科技资金,让利益相关企业和个人参与到开放数据项目中,鼓励创新,接受外部挑战,利用集体智慧,实现数据最优选择。
对于国有企业,需要在保护自身商业利益的前提下开放数据,帮助各自产业链企业的发展。同时开放数据也可以帮助其自身进行产业规划,进行有效投资,发现市场机会和风险,稳健经营,科学决策。企业可以利用开放数据提高生产效率,减少资源浪费,降低决策失误风险。产业链企业的良性发展,也会推动国企自身发展和进化,提高竞争力,优化企业经营,实现产业共赢。
对于企业家,开放数据将会作为新的资源,帮助企业进行发展,聚焦新的商业机遇,特别是在开放数据影响较大的保健行业,金融行业,能源行业,教育行业。数据服务公司可以利用开放数据,帮助消费者挖掘数据的潜在价值,为企业和政府提供具有价值的商业数据。对于经营中的公司,可以利用开放数据评价商业伙伴和潜在投资,通过提供数据来树立消费者的忠诚度,学会在透明的商业社会中进行经营,寻找公共或私人合作的机会,专注自身产品和客户,为消费者提供更好的产品和服务。
二、万亿的大数据市场
2014年的GDP中消费占比已经超过了50%,标志着中国经济正在向市场经济转型,消费占GDP 50%-70%是中等发达国家向市场经济过渡的一个表现,未来中国经济增长最大的引擎应该来源于消费,特别是个人消费。中国正在经历经济结构调整和城镇化,个人消费需求巨大,社会产品较为丰富,渠道也较为通畅,物流成本正在下降,运输能力正在提高。但是社会消费零售总额增加的还不够快,资源配置不平衡,社会整体消费水平还处于较低的水平。这些问题正在成为中国经济发展的难题,是企业和社会需要解决的问题。
大数据的商业应用将会帮助企业解决这些问题;大数据的有效利用将会提高社会消费水平,将会帮住企业提高效率、洞察客户、增加收入。大数据商业应用未来是万亿级的大市场,大数据是大生意。
大数据时代最重要的特征是人类所有的行为都被数据记录下来,无论是在电商的购买行为,旅游度假,娱乐活动,行为轨迹等,所有的人类社会行为都被各种传感器和互联网记录下来。数据记录了一切,人类社会的行为都变成了数据,用纸质媒体记录人类历史的时代已经过去,历史正在被数据以文字、数据、表格、声音、影像的方式记录了下来。中国的大数据应用主要集中在征信和精准营销,这两个市场的规模加在一起不过两千亿,但是大数据如果同所有企业的商业需求相结合,其产生的化学反应将是巨大的,市场规模将会超过万亿,大数据是个大生意。
网络连接了信息与读者,阿里连接了商品与消费者,腾讯连接了人与人。BAT所有的连接都是建立在数据基础之上的,可以认为大数据连接了一切。数据连接了消费者和商家,数据连接了客户习惯,数据连接客户喜好,数据连接了位置,数据连接了时间和空间,数据连接了历史和现在。连接一切的大数据将会反馈所连接的事物、空间和时间,通过数据记录来反馈物体的移动,客户的消费习惯,个人爱好,行为习惯,活动轨迹,运动规律等。重要的这些反馈数据能知道;你是谁、你在哪里、你喜欢什么、你在干什么、你的消费能力、以及你未来的需求等。所有被反馈的事物都被打上了一个或多个数据标签,这些具有价值的标签经过整理和分析后,将会揭示事物之间的相关性和规律,将会为个人、商家、社会带来巨大价值。
1、大数据帮助制造业规划生产,降低资源浪费
制造业过去面临生产过剩的压力,很多产品包括家电、纺织产品、钢材、水泥、电解铝等都没有按照市场实际需要生产,造成了资源的极大浪费。利用电商数据、移动互联网数据、零售数据,我们可以了解未来产品市场都需求,为客户定制产品。
例如依据用户在电商搜索产品的数据以及物流数据,可以推测出家电产品和纺织产品未来的实际需求量,厂家将依据这些数据来进行生产,避免生产过剩。移动互联网的位置信息可以帮助了解当地人口进出的趋势,避免生产过多的钢材和水泥,
2、移动大数据帮助房地产开发商规划房地产开发
房地产行业在过去为中国GDP贡献了很大力量,未来粗放型的房地产行业将会转向精细化经营,从选地到规划和从设计到建设,都需要参考当地到人口数据和消费者信息,进行科学决策;利用大数据商业应用加快房子销售速度,降低自身负债。
房地产公司可以利用人群的手机位置信息来帮助企业进行开发规划、土地选址、商铺开发等。同时利用人群到用户画像信息帮助房产公司选择合作商户,提升消费人气,最终提高房产价值。
3、移动大数据帮助餐饮零售行业进行选址和顾客导流
餐饮零售行业最关注客户流量,过去开店选址时经常安排人员在十字路口进行人流统计,利用统计的人口流动信息来决定开店地址。进入到移动互联网时代之后,智能手机的位置信息可以帮助餐饮零售行业进行开店选址,企业可以参考客户画像来决定开店的规模,以及产品的类别。
移动互联网端的用户标签和画像数据还可以帮助企业进行一些精准营销,为新开的商户导入客流。特别是在规模较大的购物商厦中,移动App端的位置导航功能,可以指引客户找到新的商户,参加促销活动。市场上已经有成熟的零售餐饮商家和移动互联网大数据公司在开店引流方面进行合作,资金利用的杠杆率超过了5倍,投入产出比较高。
4、传感器数据帮助产品进行故障诊断和预测
家电和汽车正在走向智能化,通过安装传感器,汽车和智能家电可以将运行参数和运行状态传送到厂家的云平台,厂家可以了解其产品的运行状态,零部件的老化程度,帮助厂家及时更换故障器件,延长产品使用寿命,提高安全系数。汽车行业和智能家电在物联网领域将会产生巨大的市场,云计算和大数据处理平台将起到关键的作用。
中国汽车市场的销售规模超过万亿,家电市场也有一万多亿。车联网和智能家电涉及的大数据应用市场也是巨大的,按照大数据商业变现高杠杆率的特点,其市场规模至少应该在百亿左右。
5、利用移动互联网位置信息进行精准营销
O2O已经成为了一个重要的商业模式,很多互联网企业和传统企业都在寻找O2O的应用场景,订餐、教育、家政、汽车美容等都成为O2O的应用典范。移动互联网数据具有LBS和实时特点,可以帮助企业及时连接客户,依据客户需求进行精准营销。
大型购物中心一般都设有电影院,经常存在某些电影在开场前30分钟,大量电影票还没有出售的情况。借助于手机App推送广告功能,电影院在电影放映前30分钟,可以将电影票以2折价格推送给正在周围就餐的客户。依据客户画像信息,电影票将推送给喜爱看电影的顾客,增加电影销售额。企业可以利用手机App进行广告推送,做到千人千面,依据客户喜好来进行广告推送。这种精准广告推送具有成本低、转化率高的特点,在餐饮、服装、美容、零售等行业取得了良好的应用效果。如果基于位置信息的精准广告推送被大规模的商业应用,将会促进商品流转,大幅度提高社会消费总额,帮助传统企业实现互联网+的战略。
6、电商大数据将会帮助企业优化资源配置
电商是最早利用大数据进行精准营销的行业,电商网站内推荐引擎将会依据客户的购买行为,进行关联产品的推荐。除了精准营销,电商还可以依据客户消费习惯来提前为客户备货,并利用便利店作为货物中转点,在客户下单后的短时间内,将货物送上门,提高客户体验。电商还可以利用其交易数据和现金流数据,为其生态圈内的商户提供小额贷款,也可以将此数据提供给银行,为中小企业信贷提供支持。
电商的数据量足够大,数据较为集中,数据种类较多,其商业应用具有较大的想象空间。包括预测流行趋势,消费趋势、地域消费特点、客户消费习惯、消费行为的相关度、消费热点等。依托大数据分析,电商可帮助企业进行产品设计、库存管理、计划生产、资源配置等,有利于精细化大生产,提高生产效率,优化资源配置。
7、移动大数据助力交通运输规划和管理
交通大数据应用主要在两个方面,一方面可以利用大数据传感器的数据了解车辆通行密度,合理进行道路规划。另一方面可以利用大数据分析来实现交通信号灯智能切换,提高已有线路运输能力。
在美国,政府依据某一路段的交通事故信息来增设信号灯,降低了50%以上的交通事故率。大数据可以帮助机场安排航班起降,提高管理效率;航空公司可以利用大数据提高上座率,降低运行成本;铁路公司可以利用大数据安排客运和货运列车,降低运营成本。
8、大数据帮助金融行业进行价值变现
大数据在金融行业应用范围较广,典型的案例有花旗银行利用IBM沃森电脑为财富管理客户推荐产品,美国银行利用客户点击数据集为客户提供特色服务。招商银行(600036,股吧)利用客户刷卡、存取款、电子银行转帐、微信评论等行为数据进行分析,每周给客户发送针对性广告信息。
中国目前金融行业大数据价值变主要在用户体验提升和大数据营销两个方面,其中招商银行信用卡中心和平安银行(000001,股吧)走到了金融行业的前面。
大数据在很多行业都有广泛的应用场景,例如在医疗行业,农林牧渔、能源行业、物流行业等,大数据将会是电商之后的另外一个巨大市场,结合了所有行业的商业需求之后,大数据产业的市场规模将会是个万亿级别。大数据不是电力但是比电力更能提供动力,大数据不是石油,但是比石油更能驱动企业发展。大数据就是资产,能够帮助企业进行价值变现。大数据的生意经其实很简单,就是收入增加,花费减少;就是增加客户,提高客户体验,提高资金回报的杠杆率;大数据应用成熟之后,大数据可以预测商业未来,发现新的商业机会。
㈣ 大数据时代,电信运营商如何“点石成金”
大数据风起云涌。对于大数据中蕴含的商业价值,有人形象地将其称为“数据钻出石油”。充分利用大数据技术,从海量堆积的交互数据中发现带有趋势性、前瞻性的信息,能够孕育出惊人的社会价值和商业价值。 然而,即便放眼全球,我们看到的大数据应用案例还鲜有电信运营商的身影,与互联网领域的诸多探索相比,他们略显平淡,大规模钻出“石油”就更谈不上了。面对这种情况,相信很多业内人士都在思考这些问题:大数据究竟会给电信运营商带来哪些新机遇?大数据时代下的电信运营商面临什么样的挑战?电信运营商今后将如何运筹帷幄、构建面向智慧运营的大数据体系? 从4W到4V: 运营商拥有先天优势 根据信息爆炸时代的特征,业界将大数据总结为“4V”体量(Volume)、多样(Variety)、速度(Velocity)和价值(Value)。体量意味着海量的数据,多样是指数据类型繁多,速度主要指数据被创建和移动的速度快,而价值是处理数据的目标、从各种形式呈现的复杂数据中挖掘有用的东西。 电信运营商作为信息服务的基础服务商,其提供的服务用一个简单的词来概括就是“4W”Who、When、Where、What,在使用服务时,哪些用户、需要联系谁、什么时间、处于什么位置、做些什么,这些信息无疑都需要经过运营商的管道。 对比“4V”和“4W”,我们可以发现两者之间的契合之处,通信用户数以亿计的基数保证了数据的海量和多样性,通信网络的实时承载保证了数据的速度,更重要的是,运营商还可以搜集到用户位置、大体收入等有价值的数据,进而为精准营销提供参考。因此,运营商在掌握用户行为数据方面具有先天优势,这是一般互联网厂商所望尘莫及的。随着智能手机和高速网络的普及,运营商能够获得的用户行为数据还将更为丰富。 数据科学家、《大数据时代》的作者维克托·迈尔·舍恩伯格表示,在大数据时代,拥有数据的公司无疑将取得巨大的成功。因为他们具有洞察力,大数据会提供他们全新的洞察力。从这个角度看,运营商无疑坐拥一座天然的宝藏,但是能否挖掘、提炼出这些矿藏中的价值将决定运营商能否把握住大数据带来的机遇。 由大入微: 构建智慧的大数据体系 由微入大易,由大入微难。对电信运营商来说,将无数具体而微的信息汇集起来其实并不难,真正的难点在于如何点石成金,如何“驾驭”这纷繁复杂的数据,如何存储、整合、分析、汲取出真正有价值的内容,并创造性地使用它。 大流量并不一定带来大数据,电信运营商获得的数据中大部分都是“桀骜不驯”的它们被称为非结构数据,这种数据本身并没有太多价值。目前,电信运营商在大数据方面的探索还仅仅处于起步阶段:一方面,用户的行为、轨迹、状态等数据散在网络各个环节中,形成信息资产的成本非常高;另一方面,运营商大数据挖掘手段还很不充足,如何从庞大的数据中分析出有价值的信息并找到合理的商业模式,提高“驾驭”数据的能力,成为电信运营商面临的挑战。 那么电信运营商该如何去构建面向智慧运营的大数据体系? 对电信运营商来说,可以利用大数据实现自身的精确化营销和精细化运营,在这方面,国内已经有运营商作出了尝试。使用Hadoop等大数据处理工具,通过分析用户的兴趣图谱、关系图谱、行为定向,再结合自身的业务推出量身定制的服务,如针对出差较多的商务人士,向他们推荐漫游套餐;对爱好移动上网的用户,向他们提供流量包……这本身就属于大数据应用的范畴,而且,运营商通过对业务资源和财务等数据的综合分析,可以让决策层进行快速的市场决策,从而抢占市场制高点。 未来,运营商还可以拓展第三方模式,加大开放合作力度,与产业链各个环节开展合作,加快对大数据经营商业模式的探索,不断释放其管道中庞大数据的潜在力量,将数据转化成“真金白银”。在这方面,国外电信运营商的探索给我们提供了思路。西班牙电信去年成立了名为“动态洞察”的大数据业务部门,它可以为客户提供数据分析打包服务,帮助客户把握重大变化趋势。法国电信的移动业务部门也开始尝试挖掘大数据的潜在价值,比如,它承建了一个法国高速公路数据监测项目,对每天产生的几百万条记录进行分析,从而提高了道路通畅率。更具颠覆性的是Verizon,其数据业务的盈利收入在其整个业务中占比非常高,其中就有联合第三方机构对其用户群进行大数据分析,再将有价值的信息提供给政府或企业获取的额外价值。 分析人士指出,数据化程度越高的行业,其大数据的应用场景越多,能够带来的价值也就越高。数据重构商业,虽然国内在这方面的探索还未形成规模,但对运营商来说却代表着前进的方向凭借自身优势,将数据分析包装为服务,提供给政府、商场、银行等第三方机构进行决策,从而实现商业模式的创新,并在与互联网企业的竞争中占得先机。不过,需要明确的是,这里的数据包装并不是非法采集用户个人信息,更不是贩卖用户个性化隐私,真正的大数据应该是用加工实现增值,用分析来指导决策,而非原始数据信息本身的低层次滥用。
㈤ 做大数据真的能赚钱吗
瞧您这话说的。当然能挣钱了。而且是能挣大钱。
传统意义上,我们侍正并不将谷歌列为大数据公司。但他其实是干的是数据挖掘的活,他收录了所有网上公开的数据,从中间按关键词,挖掘出用户需要的数据。然后赚了大钱,现在全年营收应该是千亿美元级别的。
比如我们三大运营商,核心业务其实是数据传输,靠这个每天一个亿的小中雹目标是妥妥的。还有全国各地正在建的各种大数据中心是做数据存储的,比较有代表性的icloud,一个季度卖谈帆可以挣10亿美刀。
比如我们现在正在用的今日头条,也是做数据挖掘的。不过谷歌挖的是数据,头条挖的是用户。记住用户的阅读历史,猜测用户的阅读喜好,然后有目标的推送阅读内容。今年也就是2019年,今日头条打算靠这个挣1000个亿软妹币。
那您说大数据挣钱么?
㈥ 三大运营商一季度报表发布,日均赚超3亿元,他们是如何盈利的
三大运营商主要拥有两种营业方式,第一种营业方式就是用户需要每个月缴纳的套餐费用,第二种营业方式就是为多个海外机构提供运营服务。
三大运营商为我国居民提供了更加良好的网络服务,虽然部分网友觉得套餐费用十分昂贵,但是相关部门也给予用户更多的选择,比如携号转网。与此同时,三大运营商在第一季度的营业额十分可观,日赚3.87亿元,却引发外界对三大运营商盈利方式的思考。
总的来说,三大运营商已经获得了高额的收入,但并不意味着三大运营商可以赚得盆满钵满。后期的设备维护和前期的设备铺设都需要大量的资金,再加上技术研发和员工聘请,每一年的营收入所剩无几。
㈦ 大数据市场有多大 怎么利用大数据赚钱
大数据市场有多大 怎么利用大数据赚钱
“大数据的市场规模没有天花板。”国务院发展研究中心信息中心研究处处长李广乾认为。不过细想,这正是目前各大企业和资本疯狂追逐大数据产业的重要原因。
“单独讨论大数据意义不大,它是依附于具体业务,和各个行业密切相关的。”李广乾认为,大数据产业规模和两大因素相关:一是经济发展水平,需要大数据的业务越多,市场体量就越大;二是信息化发展水平,能够产生数据的终端越多,数据就会越聚越多,而数据的生产是没有上限的。目前,大数据的金矿还仅是开挖了“冰山一角”。全球来看,Gartner2016年最新的技术成熟度曲线显示,大数据作为新兴领域,已经进入应用发展阶段,基础设施建设带来的规模性高速增长出现逐步放缓的趋势,技术创新和商业模式创新推动各行业应用逐步成熟,应用创造的价值在市场规模中的比重日益增大,并成为新的增长动力。从总体规模看,2016年,全球大数据市场规模实现16.5%的增长,预计将连续3年保持增速在15%左右。同时,大数据成为全球IT支出新的增长点,2016年,有近40%的企业正在实施和扩大大数据技术的应用,另有30%计划在未来12个月内应用大数据。“说大数据产业是一张画得很大的饼显然是片面的。”工信部赛迪研究院软件所所长潘文预测,包括大数据硬件、大数据软件、大数据服务等在内的大数据核心产业环节,2016年达到3100亿元,将在2020年超过1万亿元;大数据关联产业规模2016年超过5万亿元,将在2020年超过10万亿元;大数据融合产业规模2016年达到3.5万亿元,将在2020年超过20万亿元。“从大数据核心产业结构看,基于大数据的服务是大数据核心产业的主体,其规模约占大数据核心产业规模的90%,未来,服务也将是大数据产业的最核心部分。”潘文说。做数据“搬运工”目前国内大数据公司分为两类:一类是已有获取大数据能力的公司,如网络、腾讯、阿里巴巴等互联网巨头及华为、浪潮、中兴等企业,涵盖了数据采集、数据存储、数据分析、数据可视化及数据安全等领域;另一类则是初创大数据公司,依靠大数据工具,针对市场需求,为市场带来创新方案并推动技术发展。不同的大数据公司,盈利模式也不相同。如果把大数据产业比作房地产开发,那么海量数据就是地产开发时的土地资源,数据挖掘开发就是地产搭建盖楼。大数据主要的盈利模式也是围绕这两方面展开,一是通过直接“搬运”数据赚钱,二是通过数据加工分析盈利。“我们就像一个自来水厂一样,用户要你提供干净的自来水,对方可能是酒厂、饭店、饮料厂,他把你的水做成饮料或酒。”聚合数据就是一家主要依靠为客户提供数据盈利的公司,公司创始人左磊对其商业模式作了一个形象的比喻。在开发APP应用过程中,左磊发现客户对于数据的需求非常大,但他们本身却没有能力去做这些事情。聚合数据的主营业务,就是整合市面上有价值的数据源,从车辆违章信息、航班火车查询、全国加油站实时油价,到在线试题、电影、股票,做成标准化的API(应用程序编程接口),开放给开发者、企业及微信公众号用户等使用,为他们免除数据收集、维护等环节。简言之,聚合数据是一家数据源公司,充当的是数据“搬运工”的角色。在变现模式上,针对一些本身成本不高的服务,聚合数据会对用户实行免费,而对一些成本相对高的服务,会按照每个接口或服务的成本收取不同的费用。2016年,聚合数据光API接口一项营收就超过1000万元。聚合数据的盈利模式是数据买卖市场一个有代表性的类型。另一个代表性类型是,国内乃至全球第一家大数据交易所——贵阳大数据交易所,自2015年4月正式挂牌运营以来,仅用两年多时间,就实现了可交易数据总量超过150PB,内容涵盖政府、金融、交通等30大类领域,并于今年上半年实现正现金流,预计今年底累计交易流水将突破2亿元人民币。数据的“消化”和“利用”如果说搬运数据是秀肌肉的“体力活”,那么分析数据并提供解决方案就是拼智商的“脑力活”,相当于把收集来的数据“消化”“利用”好。直接售卖数据是比较底层的盈利方式,而对数据进行处理加工则在商业模式上具备更多的想象空间。数据分析可大致分为直接提供数据分析工具和输出解决方案两种模式。潘文说,数据分析工具通常可以实现情报挖掘、舆情分析、销售追踪、精准营销、个性化推荐、网站/APP分析等功能,收费方式采取按需购买,部分功能服务免费,部分功能服务收费。阿里云的“数加”平台就是典型的数据工具盈利模式。阿里云大数据事业部总监徐常亮表示,阿里云“数加”平台,承载着阿里巴巴集团、蚂蚁金服的数据,可提供一站式的数据计算、加工、处理等服务,用户不用自建计算平台。此外,基于“数加”平台,阿里云还提供数十款应用工具,覆盖数据采集、计算引擎、数据加工、数据分析、机器学习、数据应用等数据生产全链条。计算引擎之上,“数加”平台提供了最丰富的云端数据开发套件,包括数据集成、数据开发、调度系统、数据管理、运维视屏、数据质量、任务监控。在数据分析方面,通过移动数据分析产品,开发者可快速搭建日志采集、分析系统;通过“数加”平台BI报表产品,3分钟即可完成海量数据的分析报告。在机器学习方面,“数加”平台发布的机器学习工具,可基于海量数据实现对用户行为、行业走势、天气、交通等的预测。大数据公司百分点的展厅内有一面弧形墙,可以24小时实时更新数据资料和图谱。这面墙上有全网当日产品销售统计和热销产品榜单,每一个产品都有详情介绍。百分点研发总监苏海波介绍,5.5亿用户的“画像”汇总于此,包括购物偏好、网购金额变化趋势、阅读兴趣等。用户的任何网上行为都会成为大数据的一部分,经过筛选加入到用户的数据中。通过与百分点合作,商户可以根据用户消费偏好,定向推送商品;旅行社可以定向推送旅游行程信息和报价;新闻资讯APP则可以推送用户感兴趣的信息。在输出解决方案上,大数据还可以应用到医疗、教育、零售、通信等传统行业。通过大数据产生更多收益,节约成本,优化原有行业,衍生出新的商业模式。
㈧ 如何用大数据赚钱
问题一:通过大数据如何赚钱 首先要确定自己有的“大数据”是什么数据,大到怎样的量级,其中包含的数据元素有多少;
其次找到自己拥有的数据本身的商业属性,找到需要这些数据的用户,并确定他们对这些数据需要是否刚性,以及调研可以为使用这些数据的用户带来哪些价值或者改善;
最后就是设计一套运营模式,让这些数据变现。包括可以一次性的出售,这基本上不会有太多价值;更好的方式是数据动态更新,提供各种数据之间关联分析和目标组合,分别按照不同用户需要持续提供,也就可以长期的赚钱了。
市场上多数大数据本身并非真正的大数据,只是一部分数据资料而已!
问题二:大数据怎么赚钱 拥有大数据的人,才考虑这个事情哪李。
对大数据进行分析、挖掘,发现一些在小规模数据情况下不能发信的东西,这就是价值,就是钱。
问题三:如何利用大数据赚钱的方法和途径 这个要看具体的情况吧,而且做生意还是要多选择,我在国外看过一个很有特色的无比墙画,画面漂亮,不要开店的,不知道国内有没有,可以找找,以后绝对会取代墙纸
问题四:人人都在讲大数据,怎么利用大数据赚钱 大数据技术应用上可以通过开发各种APP或者系统、网站等借助大数据分析,精准营销,节约成本,挖去潜在用户人群及消费市场,从而实现变现盈利
问题五:怎么用大数据赚钱 可以说得具体点吗
问题六:大数据不再神秘 可谁知道怎么用大数据赚钱 用大数据赚钱,最低层次的,是卖数据――通过交易平台把掌握的数据直接卖出变毁扒现。
更高层次的,对数据进行分析,形成分析报告,提供给有需求的组织,这是数据可视化变现。
再高点层次的,像精准营销这种,通过掌握的海量用户数据进行用户画像,为他们展示精准的广告,收取广告主的钱,这是用数据间接变现。
最高层次的,醉翁之意不在酒,通过数据找准客户所在,最终完成自己产品的销售,或促成项目达成,这是数据商业价值变现。
问题七:怎么李余迟样利用大数据赚钱? 要看新闻更新的是否快,可以做个自己的新闻类门户网站
问题八:怎样通过大数据赚钱 拥有大数据的人,才考虑这个事情。
对大数据进行分析、挖掘,发现一些在小规模数据情况下不能发信的东西,这就是价值,就是钱。
问题九:大数据公司怎么赚钱? 根据个人理解,大数据公司赚钱分为三个等级
1. 直接出售数据: 包括脱敏的各种交易、操作、用户信息;互联网抓取的 *** 息
2. 对数据进行结构化分析后出售: 各种舆情监测,广告投放,传播分析等
3. 根据批量结构化后信息数据进行建模: 用于个性化推荐,走势预测等
中介公司大概能做第一个级别的吧。
当然,后面还有人工智能,只是目前依靠这个赚钱的公司还没看到。
问题十:现有的大数据公司,都是如何赚钱的呢 为各行业和企业做数据分析啊,互联网时代数据是很重要的,依赖有效的数据分析,可以预测到很多方面,并作出适当的运作调整。会有企业因为自己没有能力做这一块,但又需要有这方面,就找他们设计开发咯。