‘壹’ 时间序列分析论文需要的数据可以在哪里找到
在水文年鉴里找,或者是一些气象局对外公布的数据.如果就需要100个你可以找相关文章,100个不多,一般文章里都有!
‘贰’ 时间序列在建模前需要对数据做哪些检验
时间序列分析是根据系统观测得到的时间序列数据,通过曲线拟合和参数估计来建立数学模型的理论和方法。
它一般采用曲线拟合和参数估计方法(如非线性最小二乘法)进行。时间序列分析常用在国民经济宏观控制、区域综合发展规划、企业经营管理、市场潜量预测、气象预报、水文预报、地震前兆预报、农作物病虫灾害预报、环境污染控制、生态平衡、天文学和海洋学等方面。
(一)根据时间序列的散点图、自相关函数和偏自相关函数图以ADF单位根检验其方差、趋势及其季节性变化规律,对序列的平稳性进行识别。一般来讲,经济运行的时间序列都不是平稳序列。
(二)对非平稳序列进行平稳化处理。如果数据序列是非平稳的,并存在一定的增长或下降趋势,则需要对数据进行差分处理,如果数据存在异方差,则需对数据进行技术处理,直到处理后的数据的自相关函数值和偏相关函数值无显着地异于零。
(三)根据时间序列模型的识别规则,建立相应的模型。若平稳序列的偏相关函数是截尾的,而自相关函数是拖尾的,可断定序列适合AR模型;若平稳序列的偏相关函数是拖尾的,而自相关函数是截尾的,则可断定序列适合MA模型;若平稳序列的偏相关函数和自相关函数均是拖尾的,则序列适合ARMA模型。
(四)进行参数估计,检验是否具有统计意义。
(五)进行假设检验,诊断残差序列是否为白噪声。
(六)利用已通过检验的模型进行预测分析。
‘叁’ 时间序列分析capm需要哪些数据
做CAPM分析需要一个market portfolio,过去人们总是选择纽约股票市场模拟这么一个market portfolio。后来Roll1976年写了一篇文章,说这种方法未必正确,因为这样得出来的数据确实在mean-variance efficient frontier 上,但是不一定就是market portfolio。
后来人们提出了一种方法,用managed portfolio,把时间序列中条件期望变成无条件期望,常常关注的变量就是 the market return, the D/P ratio, the term premium, market return 乘以 the D/P ratio,market return 乘以 the term premium。这被称为五要素模型(five-factor model)。
‘肆’ 时间序列中每个变量要多少数据合适
当然是时间序列数据,你直接把时间t作为一个变量就是了,表示为1,2,3……(或者直接在eviews里面有trend(初始时间前一期)。如果散点图是分阶段的,就在转折点处设置虚拟变量,楼主所言面板数据所从何来?
‘伍’ 时间序列预测需要多少历史数据
时间序列是按时间顺序的一组数字序列。时间序列分析就是利用这组数列,应用数理统计方法加以处理,以预测未来事物的发展。时间序列分析是定量预测方法之一,它的基本原理:一是承认事物发展的延续性。应用过去数据,就能推测事物的发展趋势。二是考虑到事物发展的随机性。任何事物发展都可能受偶然因素影响,为此要利用统计分析中加权平均法对历史数据进行处理。该方法方法简单易行,便于掌握,但准确性差,一般只适用于短期预测。
‘陆’ 时间序列分析的基本步骤
时间序列建模基本步骤是:
①用观测、调查、统计、抽样等方法取得被观测系统时间序列动态数据。
②根据动态数据作相关图,进行相关分析,求自相关函数。相关图能显示出变化的趋势和周期,并能发现跳点和拐点。跳点是指与其他数据不一致的观测值。如果跳点是正确的观测值,在建模时应考虑进去,如果是反常现象,则应把跳点调整到期望值。拐点则是指时间序列从上升趋势突然变为下降趋势的点。如果存在拐点,则在建模时必须用不同的模型去分段拟合该时间序列,例如采用门限回归模型。
③辨识合适的随机模型,进行曲线拟合,即用通用随机模型去拟合时间序列的观测数据。对于短的或简单的时间序列,可用趋势模型和季节模型加上误差来进行拟合。对于平稳时间序列,可用通用ARMA模型(自回归滑动平均模型)及其特殊情况的自回归模型、滑动平均模型或组合-ARMA模型等来进行拟合。当观测值多于50个时一般都采用ARMA模型。对于非平稳时间序列则要先将观测到的时间序列进行差分运算,化为平稳时间序列,再用适当模型去拟合这个差分序列。
‘柒’ 时间序列数据的总体到底是什么
他概念的意思举例说明吧,!
“不同单位”?比如说2012年1月1日某个产品人报不同单位有销量,市场占有率,库存量等。
“同一时间对不同总体的数量进行观察”比如:几本书的销量,在1号,2号,3号,......他们的销量各是多少。
明白啦嘛,不明白的话再百我!
‘捌’ 如何增加时间序列数据的样本量
如果可以的话,尽量找多点样本,毕竟时序图需要多点才能便于观察,太少的话,看时序图可能不会太准确。
‘玖’ python时间序列最少需要多少数据
python推荐直接装Anaconda,它集成了许多科学计算包,有一些包自己手动去装还是挺费劲的。statsmodels需要自己去安装,推荐使用0.6的稳定版,0.7及其以上的版本能在github上找到,该版本在安装时会用C编译好,所以修改底层的一些代码将不会起作用。
‘拾’ 计量经济学时间序列数据样本最少多少年
朋友,先明确自由度的概念,自由度是指,当一个随机变量是由其他一系列随机变量定义的,这些随机变量独立项数的个数就是这个随机变量的自由度。例如,当x1,x2,..xn相互独立,则它们的平方和服从自由度为n的卡方分布。因此在回归模型中若有两个自变量、三个回归参数,则残差序列e1,e2,..en中有n-3个是独立的(估计每一个参数会损失一个自由度)所以自由度为n-3;如果你的模型不含常数项只有两个参数,自由度就是n-2.李宝仁