导航:首页 > 数据处理 > 风险普查数据员岗位怎么样

风险普查数据员岗位怎么样

发布时间:2023-06-05 02:47:50

Ⅰ 做数据分析员前景如何

可以先来看几个数据,据猎聘数据显示,数据分析师的平均薪资在20k+,应届生的平均月薪都在10k+。目前数据分析能力已成为各行业必备的通用能力。研究显示,有数据分析能力的人工资比一般人多30%,而没有数据分析能力的人失业率是一般人的2倍。

数据分析师不仅在薪资上有巨大优势,这个职位在未来将会持续有巨大的缺口。据麦肯锡咨询权威预测2025年中国将需数据人才高达220万。

初级数据分析师如果选择技术方向发展,可选择的职位也有很多,例如算法工程师、大数据开发、数据科学家等等。对这些岗位的职责,可以参考下列的解释。

1、算法工程师

运用数理统计知识、编程和业务思维建立数学模型,是当之无愧的产品灵魂。

2、数据开发工程师

数据工程师属于技术岗,负责搭建数据库、处理数据、维护数据安全等工作,主要是服务于数据的使用者,比如上文中的数据分析师、数据产品经理以及数据建模师。

3、数据科学家

数据科学家属于综合性人才,集数据分析能力(>数据分析师)、统计学基础、业务能力(>数据产品)、算法(>算法工程师)与沟通能力于一身。这类人才属于数据分析行业中的顶配,各方面的能力都超一流,不过这类人才相当稀有,在行业中基本是可遇而不可求。

最后说完了数据分析师的职业发展方向,再回归到最重要的行业本质吧。选择一个行业或职位最本质的因素就是赛道。这个道理很简单,人需要在一个天花板不断上升的行业,个人职业的发展的天花板才能跟着往上走。我们都知道只有在路很宽,人不挤的赛道上才能够跑得快,也只有在一个资本都涌入的市场上才挣到更多钱。

综上所述,数据分析师的就业前景是非常好的,如果你想要成为一名优秀的数据分析师,要先找到自己的方向,确立一个职业目标,再逐步掌握数据分析师的必备技能,在软件的基础操作上不断提升自己的应用。

Ⅱ 数据分析师以后前景怎么样

从行业背景上看,大数据作为现在最热门的行业之一,最常见的职位可以大概的分两个类型:

1、数据开发方向
偏技术,包括开发工程师、挖掘工程师、算法工程师、数仓工程师,这些相对门槛有点高,对学历、专业、毕业学校要求都是比较高的。
2、分析方向
偏业务,是通过数据发现业务问题,洞察行业机会点,通过数据产生的价值驱动企业的发展,这也是现在企业数字化转型最需要的人才,对编程能力要求较低。
有一部分人在没有建立分析思维,没有一定的项目经验的时候,可能只能做数据运营的工作,大表哥大表姐居多,数据运营和数据分析师的区别还是挺大的,根据企业的业务来看,一般来说数据运营主要是完成数据处理的工作,比如测算ROI,报表,数据整理,数据查询和一些统计类的工作等,而数据分析师的工作不仅需要掌握一些工具的基础操作,还需要懂业务,能够把商业知识和数据结合起来,能通过企业的各项数据发现企业经营过程中的业务问题,帮企业解决问题。
那么现在企业都在进行数字化转型,企业的发展都是靠着数据来推动的,数据分析决策企业战略。企业数字化转型最需要的就是懂数据的人,而国内最缺的就是具备分析能力的人才,所以市场上数据分析师的需求和薪资待遇高居不下。
如果做一个对比的话,最火的高薪职业非程序员莫属了吧,但是看就业前景的话,首先底层程序员工资低,竞争大,竞争从学校的时候就已经开始了,然后到了一定的年龄就危机了,这也是公认的。但是数据分析师却不一样,年龄越大项目经验越丰富,也就侧面佐证分析的结果越靠谱,所以做数据分析师不管是从行业发展前景,还是从薪资,都是很有前景的职业。

Ⅲ 数据分析员是什么职业,未来前景如何

数据分析师职位具有鲜明的时代特点和巨大的需求,在大学本科阶段统计专业积极探索培养大学生的数据分析能力,进而为社会提供合格的数据分析师人才的有效对策,具有重要的研究价值和实践意义。

一、数据分析师培养的意义

(一)数据分析师的培养符合国家战略

为适应世界经济一体化的进程,彻底改变我国“项目数据分析”专业技术人才紧缺的现状,2005 年 4 月,全国第一家数据分析事务所在陕西成立,到目前,我国相继已有北京、陕西、江苏、新疆、甘肃、山东、浙江、上海、黑龙江等 14 个省、市、自治区约 80 家项目数据分析专业机构进入中国市场经济舞台,涉及项目已从最初的分析评估业和金融业,扩展至会计师、投融资机构、政府审批和企业管理等众多领域。随着大数据时代的来临,构建大数据研究平台、整合创新资源、实施“专项计划”等成为各个省市的工作重点之一。

(二)数据分析师的就业前景光明

在被视为“数据元年”的今天,数据分析师以待遇优厚和地位尊崇而闻名国际,曾被Times时代杂志誉为“21世纪最热门五大新兴行业”。今天,国内数据分析行业专业人才每年以千位数非速增长着,同期各行业领域空缺岗位已达近二十万,未来中国对数据分析师的需求更是呈井喷之势。

在数据分析人才培养上,国外已经将数据分析师人才作为国家战略。据统计,目前世界 500 强企业中,有90% 以上建立了数据分析部门。大数据时代对数据分析师的巨大需求也大大刺激了高等院校的培养热情。

二、数据分析师职业素养的培养

通过对各大招聘网站数据分析师、市场调查分析师等职位招聘信息的搜集整理和深入分析,挖掘并归纳出社会用人单位对数据分析师职位的知识技能和道德素质等方面的具体要求如下:

(一)数据分析师的职业内涵

数据分析师是指在不同行业中,专门从事数据搜集、整理、分析,并依据数据做出行业或市场研究、评估和预测的专业人员;是以实际数据为依据,对项目现状及远期进行统计、分析、预测并转化为决策信息的专业人才。数据分析师可以通过掌握的大量行业数据,运用科学的计算工具,将经济学原理与数学模型结合,进行科学合理的定量分析,数据分析师可以预测企业未来的收益及风险,为企业经营决策提供科学量化分析的依据。

目前数据分析师的认证主要有 2个:一是注册数据分析师(CDA),由CDA注册数据分析师协会Certified Data Analyst Institute)在顺应大数据、云计算的潮流下发起成立的职业简称;二是项目数据分析师(CPDA),由中国商业联合会数据分析专业委员会以及工信部教育考试中心共同考核认证,证书是申请成立项目数据分析事务所的必备条件之一。

(二)数据分析师的知识要求

掌握多元统计分析、应用回归分析、时间序列分析、计量经济学、经济预测研究等统计建模方法,了解本行业统计方法的新进展;掌握 SQL/oracle 等数据库的数据整理、查询、提取等方法;熟练使用相关的统计软件,准确解读软件的运行结果;了解相关行业的业务知识和数据构成。

(三)数据分析师的能力要求

对信息、数据敏感,具备较强的文字功底,能独立撰写研究报告;能熟练使用 SPSS/SAS/Eviews 等统计分析软件,具备数据分析或数据挖掘的综合能力;掌握数据库体系结构及数据架构,具备 Excel/SQL 或 Access 的查询语句运用技能与知识,有良好的数据处理、建立统计模型能力。

(四)数据分析师的岗位职责

承担行业、企业有关信息、数据的调查、搜集、整理、分析研究和发布工作;参与专项研究、课题和调研咨询项目,撰写行业分析文章和研究报告;对大数据进行深入挖掘,建立相关模型进行预测、分析,找出相关的联系,揭示内在规律,为行业、企业决策提供依据。

三、数据分析师的培养方案

培养方案是高等教育办学思想和办学理念的集中体现,为突出数据分析的培养特色,统计专业应在深入分析数据分析职业需求的前提下,最终制定出符合数据分析师培养要求的课程体系。

(一)培养目标

为学生毕业后能够成为各行业中数据分析领域的专门人才,确定了统计专业学生在本科教育阶段的培养目标:一是具备良好的经济学、管理学和财务管理等基本素养;二是了解相关行业知识、公司业务流程;三是掌握统计学的基本理论与方法,具备熟练使用 SPSS/SAS 等统计分析软件进行数据分析或数据挖掘的综合能力;四是掌握数据库体系结构及数据架构,具备 Excel/SQL 或Access 的查询语句运用技能与知识,有良好的数据处理、建立统计模型能力;五是具备较强的文字功底,能独立撰写数据分析研究报告。

(二)课程体系设立原则

在本科教育阶段,培养数据分析师的课程设置应贯彻“三结合”的原则。

1. 多门学科相结合。数据分析工作是多个学科、多门专业在企业决策中的综合应用,要成为优秀的数据分析师,必须做到多门学科的融会贯通。需熟悉或了解数学、统计学、经济学、金融学、管理学、营销学等学科的相关知识。

2. 理论研究与实践应用相结合。高等学校一般都建有比较成熟的教学实践基地和实习基地,学生在理论学习后,可以到企事业单位或财政、金融、保险等行业进行针对性的实习实践,了解相关行业的业务知识和数据构成,运用所学知识进行数据分析,独立或合作完成数据分析研究报告。

3. 专业教育与技术资格教育相结合。通过学习,学生可获得统计学专业理学学士学位或者经济学学士学位;通过参与社会上的技术资格考试,可获得数据分析、统计师、调查分析师等专业技术资格证书。两者的结合,更有利于学生从封闭校园走向开放社会,增加技能的同时,更好地融入社会、适应社会。

(三)课程体系的基本框架

在整个教学过程中,可以将每个学期分为长、短两个小学期,短学期内设置一些与就业岗位相关的、以技能培养为目标的短期集中实践教学环节,主要是岗位实训课程。长学期课程分为4个系列:基础课程、方向课程、综合实践课程、职业拓展课程。通过整合相关知识,优化课程结构,强化实践技能,突出岗位技能实训等手段构建课程体系,以达到培养学生具有数据分析师的基本技能和素养的目的。

四、数据分析师培养过程中的策略

(一)教学内容整合策略

在课程体系和课程设置的总体构建下,按照课程模块化的思路,重新梳理课程教学内容、教学进度和深度,剔除陈旧、重复的内容,加强理论联系实际内容,增添培养综合运用能力内容,实现教学内容的整合优化。例如,《应用回归分析》与《计量经济学》的内容多有重复,可以将《应用回归分析》并入《计量经济学》;又如,《描述统计学》《数理统计》《计量经济学》和《统计预测与决策》等课程有部分重复内容,必须在对知识的审慎梳理基础上,整合相应的教学内容,重新制定教学文件。

(二)实验环节设置策略

找准专业知识方法与实际问题的结合点,并分析研究当前的热点和难点问题,充实和丰富实践教学内容,编写具有应用背景、切实达到锻炼效果的实验指导书和指导材料,以明确实验的具体环节、目的与要求。每个实验项目应包含实验性质、实验目的、实验要求、实验内容、实验步骤和结果分析等部分。所有课程的实验内容由浅入深,循序渐进,实现实践教学规范化。

(三)软件教学安排策略

为使学生充分掌握相关的统计软件,熟练使用恰当的软件从事数据的整理、分析,将统计软件的教学分为三个层次:一是单独开设 SPSS、SQL Server 数据库课程;二是课堂内开设Lingo、Eviews、SAS 等软件实验;三是短学期和综合训练开设 Latex、R 等软件课程,实现软件教学层次化。

(四)实践课程操作策略

为了强化学生的实践能力和就业竞争力,在短学期实践开设职场礼仪与沟通实、PPT 制作、统计模型、实训统计调查方法与实务、办公自动化实训等项目;各学期综合训练分别开设统计流程与分析写作、会计实践软件、统计分析案例等项目,实现综合实践职业化。

(五)拓展课程设计策略

聘任有丰富实践经验的统计师、调查分析师和企业家为兼职教授或校外导师,强化校外实践;结合第二课堂,开展与专业教学相结合的、丰富多样的课外活动;同时利用大学生统计建模大赛、大学生市场调查分析大赛、大学生数学建模竞赛等学科竞赛锻炼学生综合能力,实现职业拓展多样化。

五、数据分析师培养的保障措施

(一)整合各种教育资源,提高教学效率

没有经费的保证,数据分析师的培养只能纸上谈兵。所以,学校、二级学院应设立加大资金投入,从软硬件两方面大力支持,保证经费落到实处。利用学校现有资源 , 筹建开放实验室与实习基地,创造培养数据分析师的良好环境。

数据分析师培养必须实行产学结合,坚持开门办学,与企业联合培养的方式。创立高校与行业企业联合培养人才的新机制,改变目前高校人才培养和行业企业需求脱节的现象。通过联合办学、共建等方式利用社会资源设立实习、实验基地。

(二)建立导师制,强化教师的指导作用

为提高学生数据分析的水平,进入大二后 , 二级学院应推行本科“导师制”;到了大三 , 已经具备了一定的科研能力的本科生可以在导师的指导下参加各种与数据分析有关的专业竞赛和创新实践活动,亲身体验数据分析活动的整个过程 , 提高数据分析的基本技能与创新意识;在导师的全程参与和指导下,完成大四阶段的校内综合实训、校外毕业实习和毕业论文的撰写工作,使实践锻炼全程得到有效监控,保证教学质量。

(三)充分利用各级社团组织,

开展第二课堂的活动第二课堂是课堂教学的延伸和补充。在各级社团组织的规划和部署下,加大人力、物力的投入,将第二课堂与第一课堂进行系统性、综合性考虑与设计,实施规范化管理与组织运作,制订好一系列的活动方案,为培养数据分析师通过更多的锻炼途径和方式。

(四)改革评价机制,激发学生的学习兴趣

评价是引导师生的指挥棒,大多数学生和教师总会在现行的评价体系引导下来寻求“佳绩”。要培养出未来的数据分析师,必须增强学生的学习主动性,提高学生的实践能力。通过各种活动、各种途径加强对学生能力的培养,必须要靠科学的评价体系来衡量。为此,建立“N+2”过程考核评价体系 , 对学生能力培养、训练的全过程进行跟踪调查,通过测试、信息反馈的结果来反映教育、培训的效果和评价学生创造力的变化。

总之,项目数据分析(师)事务所在国内正迅速增长,并为政府、金融机构、企业的决策提供着日益重要的参考信息,具有良好的成长和发展空间。如何在信息海洋中找到有效的信息,如何通过有效的数据来科学决策变得尤为重要,因此数据分析师的前景必定辉煌。

Ⅳ 数据分析这个岗位的前景如何

数据分析这个岗位的前景肯定是好的,但是对于个人来说,想要在这个行业就业,还是更看重是否具备这种能力。

之所以会怎么说,是因为现在是一个大数据的时代,很多的商业活动都会涉及到数据分析这个领域,可以说它是创业或者开展某项商业活动的基础,只有通过分析数据,才能更好的开展商业项目。正是如此,对于数据分析员岗位专业性要求还是很高,所以对于个人来说,如果想要在数据分析领域有所发展,提升自己的能力更加重要。

一、重点培养数据分析员。

为了适应大数据的经济体系,改变我国目前项目数据分析专业技术人才缺席的现状,在很早我国就已经开始针对这一问题进行重点培养数据分析人才。在多省连续开展培养这方面人才的计划,05年第一家数据分析事务所在陕西成立,随后有14个省市相继引进了大概共有80家项目数据分析专业机构,而且涉及的行业也越来越广泛。

Ⅳ 风险普查员是干什么的

风险普查员是评估风险的。以全国自然灾害综合风险普查为例。

通过开展普查,摸清全国自然灾害风险隐患底数,查明重点地区抗灾能力,客观认识全国和各地区自然灾害综合风险水平,为中央和地方各级人民政府有效开展自然灾害防治工作、切实保障经济社会可持续发展提供权威的灾害风险信息和科学决策依据。

开展全国自然灾害综合风险普查,是摸清我国灾害风险隐患底数的重要手段,也是提升全社会灾害风险意识的重要途径。

近年来,中国多地发生自然灾害,造成部分人员伤亡和财产损失,在引发广泛社会关注的同时,也引起了国家的重视。事实上,中国已经成为世界上自然灾害最严重的国家之一。

针对这一事实和我国自然灾害所具有种类多、范围广、频率高等特点,我国开展了自然灾害综合风险的普查,这是一项全国性的综合工作。

在调查过程中,遥感、地理信息系统、大数据、云计算等新技术将得到充分应用。如运用高分辨率遥感影像,辅助各类调查和评估。

利用地理信息系统的空间展示和管理功能,开展各类空间信息统一管理、分析评估和制图;搭建云计算环境,构建风险普查大数据管理与处理系统,实现全国调查和评估工作的实时在线处理。

阅读全文

与风险普查数据员岗位怎么样相关的资料

热点内容
隐藏的程序什么也看不见 浏览:817
工程技术专业能考什么证书 浏览:358
百能的不锈钢橱柜市场什么价位 浏览:209
三岔口菜市场在哪里 浏览:308
跳蚤市场图书怎么做 浏览:233
七月份的数据有什么用 浏览:580
废锡渣多少钱一公斤市场价 浏览:562
淘手游交易金额多少才能立案 浏览:782
如何做好带货小程序 浏览:75
2020年周边有哪些新建农贸市场 浏览:283
涂料的产品怎么样 浏览:583
怎么多循环一次程序 浏览:158
大商所交易系统是什么 浏览:386
徐步天交易要多少天 浏览:22
哪个手机app可以模拟交易美股 浏览:819
爱情虚假交易是什么意思 浏览:459
番禺哪里有鲜花批发市场 浏览:565
山东修正健康饮品怎么代理 浏览:786
数据比较多复制是哪个键 浏览:476
批发市场的东西为什么这么便宜 浏览:898