导航:首页 > 数据处理 > 数据清洗的实例有哪些

数据清洗的实例有哪些

发布时间:2023-06-01 16:22:22

1. 数据清洗的方法包括哪些

数据清洗的方法:

1、分箱法

是一个经常使用到方法,所谓的分箱法,就是将需要处理的数据根据一定的规则放进箱子里,然后进行测试每一个箱子里的数据,并根据数据中的各个箱子的实际情况进行采取方法处理数据。

2、回归法

回归法就是利用了函数的数据进行绘制图像,然后对图像进行光滑处理。回归法有两种,一种是单线性回归,租派一种是好御多线性回归。单线性回归就是找出两个属性的最佳直线,能够弊袜贺从一个属性预测另一个属性。多线性回归就是找到很多个属性,从而将数据拟合到一个多维面,这样就能够消除噪声。

3、聚类法

聚类法的工作流程是比较简单的,但是操作起来确实复杂的,所谓聚类法就是将抽象的对象进行集合分组,成为不同的集合,找到在集合意外的孤点,这些孤点就是噪声。这样就能够直接发现噪点,然后进行清除即可。

数据清洗的定义:

数据清洗从名字上也看的出就是把“脏”的“洗掉”,指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。

因为数据仓库中的数据是面向某一主题的数据的集合,这些数据从多个业务系统中抽取而来而且包含历史数据,这样就避免不了有的数据是错误数据、有的数据相互之间有冲突,这些错误的或有冲突的数据显然是我们不想要的,称为“脏数据”。

我们要按照一定的规则把“脏数据”“洗掉”,这就是数据清洗。而数据清洗的任务是过滤那些不符合要求的数据,将过滤的结果交给业务主管部门,确认是否过滤掉还是由业务单位修正之后再进行抽取。

不符合要求的数据主要是有不完整的数据、错误的数据、重复的数据三大类。数据清洗是与问卷审核不同,录入后的数据清理一般是由计算机而不是人工完成。

2. 如何进行数据清洗

数据清理是有一些步骤的,一般分为缺失值清洗,格式内容清洗,逻辑错误清洗,非需求数据清洗,关联性验证。

缺失值是最常见的数据问题,处理缺失值也有很多方法,我建议按照以下四个步骤进行:1、确定缺失值范围:对每个字段都计算其缺失值比例,然后按照缺失比例和字段重要性,分别制定策略。

2、去除不需要的字段:这一步很简单,直接删掉即可,但强烈建议清洗每做一步都备份一下,或者在小规模数据上试验成功再处理全量数据。

3、填充缺失内容:某些缺失值可以进行填充。

4、重新取数:如果某些指标非常重要又缺失率高,那就需要和取数人员或业务人员了解,是否有其他渠道可以取到相关数据。

第二步:格式内容清洗
如果数据是由系统日志而来,那么通常在格式和内容方面,会与元数据的描述一致。而如果数据是由人工收集或用户填写而来,则有很大可能性在格式和内容上存在一些问题。

第三步:逻辑错误清洗
这部分的工作是去掉一些使用简单逻辑推理就可以直接发现问题的数据,防止分析结果走偏。

第四步:非需求数据清洗
这一步说起来非常简单:把不要的字段删了。

但实际操作起来,有很多问题。

第五步:关联性验证
如果你的数据有多个来源,那么有必要进行关联性验证。例如,你有汽车的线下购买信息,也有电话客服问卷信息,两者通过姓名和手机号关联,要看一下同一个人线下登记的车辆信息和线上问卷问出来的车辆信息是不是同一辆,如果不是,那么需要调整或去除数据。

3. 数据分析中如何清洗数据

数据分析中数据集通常包含大量数据,这些数据可能以不易于使用的格式存储。因此,数据分析师首先需要确保数据格式正确并符合规则集。

此外,合并来自不同来源的数据可能很棘手,数据分析师的另一项工作是确保所得到的信息合并有意义。

数据稀疏和格式不一致是最大的挑战–这就是数据清理的全部内容。数据清理是一项任务,用于识别不正确,不完整,不准确或不相关的数据,修复问题,并确保将来会自动修复所有此类问题,数据分析师需要花费60%的时间去组织和清理数据!

数据分析中数据清理有哪些步骤?

以下是经验丰富的开发团队会采用的一些最常见的数据清理步骤和方法:

  1. 处理丢失的数据

  2. 标准化流程

  3. 验证数据准确性

  4. 删除重复数据

  5. 处理结构错误

  6. 摆脱不必要的观察

扩展阅读:

让我们深入研究三种选定的方法:

处理丢失的数据——忽略数据集中的丢失值,是一个巨大的错误,因为大多数算法根本不接受它们。一些公司通过其他观察值推算缺失值或完全丢弃具有缺失值的观察值来解决此问题。但是这些策略会导致信息丢失(请注意,“无价值”也会告诉我们一些信息。如果公司错过了分类数据,则可以将其标记为“缺失”。缺失的数字数据应标记为0,以进行算法估计)在这种情况下的最佳常数。

结构性错误——这些是在测量,传输数据期间出现的错误,以及由于数据管理不善而引起的其他问题。标点符号不一致,错别字和标签错误是这里最常见的问题。这样的错误很好地说明了数据清理的重要性。

不需要的观察——处理数据分析的公司经常在数据集中遇到不需要的观察。这些可以是重复的观察,也可以是与他们要解决的特定问题无关的观察。检查不相关的观察结果是简化工程功能流程的好策略-开发团队将可以更轻松地建立模型。这就是为什么数据清理如此重要的原因。

对于依赖数据维护其运营的企业而言,数据的质量至关重要。举个例子,企业需要确保将正确的发票通过电子邮件发送给合适的客户。为了充分利用客户数据并提高品牌价值,企业需要关注数据质量。

避免代价高昂的错误:

数据清理是避免企业在忙于处理错误,更正错误的数据或进行故障排除时增加的成本的最佳解决方案。

促进客户获取:

保持数据库状态良好的企业可以使用准确和更新的数据来开发潜在客户列表。结果,他们提高了客户获取效率并降低了成本。

跨不同渠道理解数据:

数据分析师们在进行数据清理的过程中清除了无缝管理多渠道客户数据的方式,使企业能够找到成功开展营销活动的机会,并找到达到目标受众的新方法。

改善决策过程:

像干净的数据一样,无助于促进决策过程。准确和更新的数据支持分析和商业智能,从而为企业提供了更好的决策和执行资源。

提高员工生产力:

干净且维护良好的数据库可确保员工的高生产率,他们可以从客户获取到资源规划的广泛领域中利用这些信息。积极提高数据一致性和准确性的企业还可以提高响应速度并增加收入。

4. 数据清洗是什么数据清洗有哪些方法

随着大数据时代的发展,越来越多的人开始投身于大数据分析行业。当我们进行大数据分析时,我们经常听到熟悉的行业词,如数据分析、数据挖掘、数据可视化等。然而,虽然一个行业词的知名度不如前几个词,但它的重要性相当于前几个词,即数据清洗。

 

 

 

顾名思义,数据清洗是清洗脏数据,是指在数据文件中发现和纠正可识别错误的最后一个程序,包括检查数据一致性、处理无效值和缺失值。哪些数据被称为脏数据?例如,需要从数据仓库中提取一些数据,但由于数据仓库通常是针对某一主题的数据集合,这些数据是从多个业务系统中提取的,因此不可避免地包含不完整的数据。错误的数据非常重复,这些数据被称为脏数据。我们需要借助工具,按照一定的规则清理这些脏数据,以确保后续分析结果的准确性。这个过程是数据清洗。

 

 

常用的数据清洗方法主要有以下四种:丢弃、处理和真值转换。让我们来看看这四种常见的数据清洗方法。

 

1、丢弃部分数据

丢弃,即直接删除有缺失值的行记录或列字段,以减少趋势数据记录对整体数据的影响,从而提高数据的准确性。但这种方法并不适用于任何场景,因为丢失意味着数据特征会减少,以下两个场景不应该使用丢弃的方法:数据集中存在大量数据记录不完整和数据记录缺失值明显的数据分布规则或特征。

 

2、补全缺失的数据

与丢弃相比,补充是一种更常用的缺失值处理方法,通过某种方法补充缺失的数据,形成完整的数据记录对后续的数据处理。分析和建模非常重要。

 

3、不处理数据

不处理是指在数据预处理阶段,不处理缺失值的数据记录。这主要取决于后期的数据分析和建模应用。许多模型对缺失值有容忍度或灵活的处理方法,因此在预处理阶段不能进行处理。

 

4、真值转换法

承认缺失值的存在,并将数据缺失作为数据分布规律的一部分,将变量的实际值和缺失作为输入维度参与后续数据处理和模型计算。然而,变量的实际值可以作为变量值参与模型计算,而缺失值通常不能参与计算,因此需要转换缺失值的真实值。

 

俗话说,工欲善其事,必先利其器。一个好用的工具对数据清洗工作很有帮助,思迈特软件Smartbi的数据清洗功能就十分优秀。

 

思迈特软件Smartbi的轻量级ETL功能,可视化流程配置,简单易用,业务人员就可以参与。采用分布式计算架构,单节点支持多线程,可处理大量数据,提高数据处理性能。强大的数据处理功能不仅支持异构数据,还支持内置排序、去重、映射、行列合并、行列转换聚合以及去空值等数据预处理功能。

 

 

现在你知道什么是数据清洗吗?数据清洗是数据分析中一个非常重要的环节,不容忽视。Smartbi的这些功能配置,无疑是数据清洗的好帮手。


5. 数据挖掘中常用的数据清洗方法

数据挖掘中常用的数据清洗方法
对于数据挖掘来说,80%的工作都花在数据准备上面,而数据准备,80%的时间又花在数据清洗上,而数据清洗的工作,80%又花在选择若干种适当高效的方法上。用不同方法清洗的数据,对后续挖掘的分析工作会带来重大影响。

1、数值化
由于原始数据往往存在各种不同格式的数据形式,比如如果你要处理的数据是数值型,但是原始数据也许有字符型或者其他,那就要对其进行标准化操作。处理的方式可以很简单也可以很复杂,我采取过的一个方法是:对字符串取值,按照ANSI码值求和得到字符串的值,如果值太大,可以取一个适当的质数对其求模,本质上就是映射到一个区间了。然后就得到数值型的数据了。
2、标准化 normalization
由于原始数据各个维度之间的数值往往相差很大,比如一个维度的最小值是0.01,另一个维度最小值却是1000,那么也许在数据分析的时候,计算相关性或者方差啥的指标,后者会掩盖了前者的作用。因此有必要对整体数据进行归一化工作,也就是将它们都映射到一个指定的数值区间,这样就不会对后续的数据分析产生重大影响。我采取过的一个做法是:min-max标准化。
3、降维
由于原始数据往往含有很多维度,也就是咱们所说的列数。比如对于银行数据,它往往就含有几十个指标。这些维度之间往往不是独立的,也就是说也许其中之间若干的维度之间存在关联,也许有他就可以没有我,因此咱们可以使用数据的相关性分析来降低数据维度。我使用过的一个方法是:主成分分析法。
4、完整性:
解决思路:数据缺失,那么补上就好了。
补数据有什么方法?
- 通过其他信息补全,例如使用身份证件号码推算性别、籍贯、出生日期、年龄等
- 通过前后数据补全,例如时间序列缺数据了,可以使用前后的均值,缺的多了,可以使用平滑等处理,记得Matlab还是什么工具可以自动补全

- 实在补不全的,虽然很可惜,但也必须要剔除。但是不要删掉,没准以后可以用得上

- 解决数据的唯一性问题
解题思路:去除重复记录,只保留一条。
去重的方法有:
- 按主键去重,用sql或者excel“去除重复记录”即可,
- 按规则去重,编写一系列的规则,对重复情况复杂的数据进行去重。例如不同渠道来的客户数据,可以通过相同的关键信息进行匹配,合并去重。

- 解决数据的权威性问题
解题思路:用最权威的那个渠道的数据
方法:
对不同渠道设定权威级别,例如:在家里,首先得相信媳妇说的。。。

- 解决数据的合法性问题
解题思路:设定判定规则

- 设定强制合法规则,凡是不在此规则范围内的,强制设为最大值,或者判为无效,剔除

- 字段类型合法规则:日期字段格式为“2010-10-10”
- 字段内容合法规则:性别 in (男、女、未知);出生日期<=今天

设定警告规则,凡是不在此规则范围内的,进行警告,然后人工处理

- 警告规则:年龄》110

离群值人工特殊处理,使用分箱、聚类、回归、等方式发现离群值
解决数据的一致性问题

解题思路:建立数据体系,包含但不限于:

- 指标体系(度量)
- 维度(分组、统计口径)
- 单位
- 频度
- 数据

6. 数据清洗的内容有哪些

数据清洗的内容包括:选择子集、列名重命名、缺失值处理、数据类型转换、异常值处理以及数据排序。

1、选择子集

在数据分析的过程中,有可能数据量会非常大,但并不是每一列都有分析的价值,这时候就要从这些数据中选择有用的子集进行分析,这样才能提高分析的价值和效率。

2、列名重命名

在数据分析的过程中,有些列名和数据容易混淆或者让人产生歧义。

3、缺失值处理

获取的数据中很可能存在这缺失值,这会对分析的结果造成影响。

4、数据类型的转换

在导入数据的时候为了防止导入不进来,python会强制转换为object类型,然是这样的数据类型在分析的过程中不利于运算和分析。

数据清洗是指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。与问卷审核不同,录入后的数据清理一般是由计算机而不是人工完成。

数据清洗方法:一般来说,数据清理是将数据库精简以除去重复记录,并使剩余部分转换成标准可接收格式的过程。数据清理标准模型是将数据输入到数据清理处理器,通过一系列步骤“ 清理”数据,然后以期望的格式输出清理过的数据。数据清理从数据的准确性、完整性、一致性、惟一性、适时性、有效性几个方面来处理数据的丢失值、越界值、不一致代码、重复数据等问题。

7. 数据清洗技术有哪些

数据清洗是指在数据集中发现不准确、不完整或不合理数据,并对这些数据进行修补或移除以提高数据质量的过程。而通常来说,数据清洗框架由5个步骤构成,第一就是定义错误类型,第二就是搜索并标识错误实例,第三就是改正错误,第四就是文档记录错误实例和错误类型,第五就是修改数据录入程序以减少未来的错误。

清洗数据有三个方法,分别是分箱法、聚类法、回归法。这三种方法各有各的优势,能够对噪音全方位的清理。分箱法是一个经常使用到方法,所谓的分箱法,就是将需要处理的数据根据一定的规则放进箱子里,然后进行测试每一个箱子里的数据,并根据数据中的各个箱子的实际情况进行采取方法处理数据。

怎么分箱,我们可以按照记录的行数进行分箱,使得每箱有一个相同的记录数。或者我们把每个箱的区间范围设置一个常数,这样我们就能够根据区间的范围进行分箱。其实我们也可以自定义区间进行分箱。这三种方式都是可以的。分好箱号,我们可以求每一个箱的平均值,中位数、或者使用极值来绘制折线图,一般来说,折线图的宽度越大,光滑程度也就越明显。

阅读全文

与数据清洗的实例有哪些相关的资料

热点内容
二手房买卖交易流程是什么 浏览:939
充红包银行拒绝交易怎么回事 浏览:195
抖音数据清空了怎么恢复 浏览:470
技术学院指哪些 浏览:516
开店做什么生意好加盟代理 浏览:31
增益开关技术是什么 浏览:499
隐藏的程序什么也看不见 浏览:817
工程技术专业能考什么证书 浏览:358
百能的不锈钢橱柜市场什么价位 浏览:209
三岔口菜市场在哪里 浏览:309
跳蚤市场图书怎么做 浏览:233
七月份的数据有什么用 浏览:580
废锡渣多少钱一公斤市场价 浏览:562
淘手游交易金额多少才能立案 浏览:782
如何做好带货小程序 浏览:77
2020年周边有哪些新建农贸市场 浏览:283
涂料的产品怎么样 浏览:584
怎么多循环一次程序 浏览:160
大商所交易系统是什么 浏览:388
徐步天交易要多少天 浏览:23