导航:首页 > 数据处理 > 数据库性能分析怎么用

数据库性能分析怎么用

发布时间:2023-06-01 15:43:42

❶ 怎样进行数据库性能测试

使用LR对数据库进行性能测试,实际上有多种办法,包括通过现有的数据库协议进行CS模式的先录制后执行的模式,以及通过socket方式向服务器发包方式的测试方式。这些是常规书籍上介绍的比较简单上手的测试方法,但是不具备通用性,受已有协议或soc...

❷ 如何使用AWR报告来诊断数据库性能问题

一般来说,当检测到性能问题时,我们会收集覆盖了发生问题的时间段的AWR报告-但是最好只收集覆盖1个小时时间段的AWR报告-如果时间过长,那么AWR报告就不能很好的反映出问题所在。还应该收集一份没有性能问题的时间段的AWR报告,作为一个参照物来对比有问题的时间段的AWR报告。这两个AWR报告的时间段应该是一致的,比如都是半个小时的,或者都是一个小时的。
Interpretation
在处理性能问题时,我们最关注的是数据库正在等待什么。
当进程因为某些原因不能进行操作时,它需要等待。花费时间最多的等待事件是我们最需要关注的,因为降低它,我们能够获得最大的好处。
AWR报告中的"Top 5 Timed Events"部分就提供了这样的信息,可以让我们只关注主要的问题。

Top 5 Timed Events
正如前面提到的,"Top 5 Timed Events"是AWR报告中最重备告要的部分。它指出了数据库的sessions花费时间最多的等待事件,如下:

Top 5 Timed Events Avg %Total

~~~~~~~~~~~~~~~~~~ wait Call

Event Waits Time (s) (ms) Time Wait Class

------------------------------ ------------ ----------- ------ ------ ----------

db file scattered read 10,152,564 81,327 8 29.6 User I/O

db file sequential read 10,327,231 75,878 7 27.6 User I/O

CPU time 56,207 20.5

read by other session 4,397,330 33,455 8 12.2 User I/O

PX Deq Credit: send blkd 31,398 26,576 846 9.7 Other

-------------------------------------------------------------

Top 5 Events部分包含了一些跟Events(事件)相关的信息。它记录了这期间遇到的等待的总次数,等待所花费的总时间,每次等待的平均时间;这一部分是按照每个Event占总体call time的百分比来进行排序的。

根 据Top 5 Events部分的信息的不同,接下来我们需要检查AWR报告的其他部分,来验证发现的问题或者做定量分析。等待事件需要根据报告期的持续时间和当时数据 库中的并发用户数进行评估。如:10分钟内1000万次的等待事件比10个小时内的1000万等待更有问题;10个用户引起的1000万次的等待事件比 10,000个用户引起的相同的等待要更有问题。

就像上面的例子,将近60%的时间是在等待IO相关的事件。

其他20%的时间旅滚世是花在使用或等待CPU time上。过高的CPU使用经常是性能不佳的SQL引起的(或者这些SQL有可能用更少的资源完成同样的操作);对于这样的SQL,过多的IO操作也是一个症状。关于CPU使用方面,我们会在之后讨论。

在以上基础上,我们将调查是否这个等待事件是有问题的。若有问题,解决它;若是正常的,检查下个等待事件。

过多的IO相关的等待一般会有两个主要的原因:

Top 5 Events部分的显示的信息会帮助我们检查:

需要注意,接下来的分析步骤取决于我们在TOP 5部分的发现。在上面的例子里,3个top wait event表明问拆肢题可能与SQL语句执行计划不好有关,所以接下来我们要去分析"SQL Statistics"部分。
同样的,因为我们并没有看到latch相关的等待,latch在我们这个例子里并没有引发严重的性能问题;那么我们接下来就完全不需要分析latch相关的信息。
一 般来讲,如果数据库性能很慢,TOP 5等待事件里"CPU", "db file sequential read" 和"db file scattered read" 比较明显(不管它们之间的顺序如何),我们总是需要检查Top SQL (by logical and physical reads)部分;调用SQL Tuning Advisor或者手工调优这些SQL来确保它们是有效率的运行。
是否数据库做了大量的读操作:
上面的图显示了在这段时间里两类读操作都分别大于1000万,这些操作是否过多取决于报告的时间是1小时或1分钟。我们可以检查AWR报告的elapsed time如果这些读操作确实是太多了,接下来我们需要检查AWR报告中 SQL Statistics 部分的信息,因为读操作都是由SQL语句发起的。
是否是每次的IO读操作都很慢:
上面的图显示了在这段时间里两类读操作平均的等待时间是小于8ms的
至于8ms是快还是慢取决于底层的硬件设备;一般来讲小于20ms的都可以认为是可以接受的。

我们还可以在AWR报告"Tablespace IO Stats"部分得到更详细的信息

Tablespace IO Stats DB/Inst: VMWREP/VMWREP Snaps: 1-15

-> ordered by IOs (Reads + Writes) desc

Tablespace

------------------------------

Av Av Av Av Buffer Av Buf

Reads Reads/s Rd(ms) Blks/Rd Writes Writes/s Waits Wt(ms)

-------------- ------- ------ ------- ------------ -------- ---------- ------

TS_TX_DATA

14,246,367 283 7.6 4.6 145,263,880 2,883 3,844,161 8.3

USER

204,834 4 10.7 1.0 17,849,021 354 15,249 9.8

UNDOTS1

19,725 0 3.0 1.0 10,064,086 200 1,964 4.9

AE_TS

4,287,567 85 5.4 6.7 932 0 465,793 3.7

TEMP

2,022,883 40 0.0 5.8 878,049 17 0 0.0

UNDOTS3

1,310,493 26 4.6 1.0 941,675 19 43 0.0

TS_TX_IDX

1,884,478 37 7.3 1.0 23,695 0 73,703 8.3

>SYSAUX

346,094 7 5.6 3.9 112,744 2 0 0.0

SYSTEM

101,771 2 7.9 3.5 25,098 0 653 2.7

如上图,我们关心Av Rd(ms)的指标。如果它高于20ms并且同时有很多读操作的,我们可能要开始从OS的角度调查是否有潜在的IO问题。

注:对于一些比较空闲的tablespace/files,我们可能会得到一个比较大的Av Rd(ms)值;对于这样的情况,我们应该忽略这样的tablespace/files;因为这个很大的值可能是由于硬盘自旋(spin)引起的,没有太大的参考意义。比如对
于一个有1000万次读操作而且很慢的系统,引起问题的基本不可能是一个只有10次read的tablespace/file.
虽 然高"db file scattered read"和"db file sequential read"等待可以是I / O相关的问题,但是很多时候这些等待也可能是正常的;实际上,对一个已经性能很好的数据库系统,这些等待事件往往在top 5等待事件里,因为这意味着您的数据库没有那些真正的“问题”。
诀窍是能够评估引起这些等待的语句是否使用了最优的访问路径。如果"db file scattered read"比较高,那么相关的SQL语句可能使用了全表扫描而没有使用索引(也许是没有创建索引,也许是没有合适的索引);相应的,如果"db file sequential read"过多,则表明也许是这些SQL语句使用了selectivity不高的索引从而导致访问了过多不必要的索引块或者使用了错误的索引。这些等待可 能说明SQL语句的执行计划不是最优的。
接下来就需要通过AWR来检查这些top SQL是否可以进一步的调优,我们可以查看AWR报告中 SQL Statistics 的部分.
上面的例子显示了20%的时间花在了等待或者使用CPU上,我们也需要检查 SQL statistics 部分来进一步的分析。
数据库做了太多的读操作
每次的IO读操作都很慢
事件"db file scattered read"一般表明正在做由全表扫描或者index fast full scan引起的多块读。
事件"db file sequential read"一般是由不能做多块读的操作引起的单块读(如读索引)

SQL Statistics
AWR包含了一些不同的SQL统计值:

根据Top 5 部分的Top Wait Event不同,我们需要检查不同的SQL statistic。

在我们这个例子里,Top Wait Event是"db file scattered read","db file sequential read"和CPU;我们最需要关心的是SQL ordered by CPU Time, Gets and Reads。

我们会从"SQL ordered by gets"入手,因为引起高buffer gets的SQL语句一般是需要调优的对象。

SQL ordered by Gets

-> Resources reported for PL/SQL code includes the resources used by all SQL

statements called by the code.

-> Total Buffer Gets: 4,745,943,815

-> Captured SQL account for 122.2% of Total

Gets CPU Elapsed

Buffer Gets Executions per Exec %Total Time (s) Time (s) SQL Id

-------------- ------------ ------------ ------ -------- --------- -------------

1,228,753,877 168 7,314,011.2 25.9 8022.46 8404.73 5t1y1nvmwp2

SELECT ADDRESSID",CURRENT$."ADDRESSTYPEID",CURRENT$URRENT$."ADDRESS3",

CURRENT$."CITY",CURRENT$."ZIP",CURRENT$."STATE",CURRENT$."PHONECOUNTRYCODE",

CURRENT$."PHONENUMBER",CURRENT$."PHONEEXTENSION",CURRENT$."FAXCOU

1,039,875,759 62,959,363 16.5 21.9 5320.27 5618.96 grr4mg7ms81

Mole: DBMS_SCHEDULER

INSERT INTO "ADDRESS_RDONLY" ("ADDRESSID","ADDRESSTYPEID","CUSTOMERID","
ADDRESS1","ADDRESS2","ADDRESS3","CITY","ZIP","STATE","PHONECOUNTRYCODE","PHONENU

854,035,223 168 5,083,543.0 18.0 5713.50 7458.95 4at7cbx8hnz

SELECT "CUSTOMERID",CURRENT$."ISACTIVE",CURRENT$."FIRSTNAME",CURRENT$."LASTNAME",CU<
RRENT$."ORGANIZATION",CURRENT$."DATEREGISTERED",CURRENT$."CUSTOMERSTATUSID",CURR
ENT$."LASTMODIFIEDDATE",CURRENT$."SOURCE",CURRENT$."EMPLOYEEDEPT",CURRENT$.

对这些Top SQL,可以手工调优,也可以调用SQL Tuning Advisor。

分析:

Other SQL Statistic Sections
就像之前提到的那样,AWR报告中有很多不同的部分用来分析各种不同的问题。如果特定的问题并没有出现,那么分析AWR报告的这些部分并不能有很大的帮助。
下面提到了一些可能的问题:

Waits for 'Cursor: mutex/pin' 如 果发现了一些像"Cursor: pin S wait on X" 或"Cursor: mutex X" 类的mutex等待,那么可能是由于parsing引起的问题。检查"SQL ordered by Parse Calls" 和"SQL ordered by Version Count"部分的Top SQL,这些SQL可能引起这类的问题。
单次执行buffer gets过多
SQL_ID为'5t1y1nvmwp2'和'4at7cbx8hnz'的SQL语句总共被执行了168次,但是每次执行引起的buffer gets超过500万。这两个SQL应该是主要的需要调优的候选者。
执行次数过多
SQL_ID 'grr4mg7ms81' 每次执行只是引起16次buffer gets,减少这条SQL每次执行的buffer get可能并不能显着减少总共的buffer gets。这条语句的问题是它执行的太频繁了,6500万次。
改变这条SQL的执行次数可能会更有意义。这个SQL看起来是在一个循环里面被调用,如果可以让它一次处理的数据更多也许可以减少它执行的次数。
-> Total Buffer Gets: 4,745,943,815
假设这是一个一个小时的AWR报告,4,745,943,815是一个很大的值;所以需要进一步分析这个SQL是否使用了最优的执行计划
Indivial Buffer Gets
上面的例子里单个的SQL的buffer get非常多,最少的那个都是8亿5千万。这三个SQL指向了两个不同的引起过多buffers的原因:
注意:对于某些非常繁忙的系统来讲,以上的数字可能都是正常的。这时候我们需要把这些数字跟正常时段的数字作对比,如果没有什么太大差别,那么这些SQL并不是引起问题的元兇(虽然通过调优这些SQL我们仍然可以受益)

Load Profile
根据Top 5等待事件的不同,"Load Profile"可以提供一些有用的背景资料或潜在问题的细节信息。
Load Profile

~~~~~~~~~~~~ Per Second Per Transaction

--------------- ---------------

Redo size: 4,585,414.80 3,165,883.14

Logical reads: 94,185.63 65,028.07

Block changes: 40,028.57 27,636.71

Physical reads: 2,206.12 1,523.16

Physical writes: 3,939.97 2,720.25

User calls: 50.08 34.58

Parses: 26.96 18.61

Hard parses: 1.49 1.03

Sorts: 18.36 12.68

Logons: 0.13 0.09

Executes: 4,925.89 3,400.96

Transactions: 1.45

% Blocks changed per Read: 42.50 Recursive Call %: 99.19

Rollback per transaction %: 59.69 Rows per Sort: 1922.64

在这个例子里,Top 5 Events部分显示问题可能跟SQL的执行有关,那么我们接下来检查load profile部分。

如果您检查AWR report是为了一般性的性能调优,那么可以看到有比较多的redo activity和比较高的physical writes. Physical writes比physical read要高,并且有42%的块被更改了.

此外,hard parse的次数要少于soft parse.
如果mutex等待事件比较严重,如"library cache: mutex X",那么查看所有parse的比率会更有用。

当然,如果把Load Profile部分跟正常时候的AWR报告做比较会更有用,比如,比较redo size, users calls, 和 parsing这些性能指标。

Instance Efficiency
Instance Efficiency部分更适用于一般性的调优,而不是解决某个具体问题(除非等待事件直接指向这些指标)。

Instance Efficiency Percentages (Target 100%)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Buffer Nowait %: 99.91 Redo NoWait %: 100.00

Buffer Hit %: 98.14 In-memory Sort %: 99.98

Library Hit %: 99.91 Soft Parse %: 94.48

Execute to Parse %: 99.45 Latch Hit %: 99.97

Parse CPU to Parse Elapsd %: 71.23 % Non-Parse CPU: 99.00

从我们的这个例子来看,最有用的信息是%Non-Parse CPU,它表明几乎所有的CPU都消耗在了Execution而不是Parse上,所以调优SQL会对性能有改善。

❸ MYSQL数据库服务器性能分析的方法命令有哪些

?Show
status
?一些值得监控的和穗喊变量值唤野:
?Bytes_received和Bytes_sent
?和服务器之间来往的流量。
?Com_*服务器正在执行的命令。
?Created_*在查询执行期限间创建的临时表和文族侍件。
?Handler_*存储引擎操作。
?Select_*不同类型的联接执行计划。
?Sort_*几种排序信息。
?Show
session status like ‘Select’;
?Show profiles
?SET profiling=1;
?Show
profiles\G
?Show profile;

❹ SQLServer和Oracle数据库分析(oraclesql性能分析)

分析原则:

1、具体问题具体分析(这是由于不同的应用系统,不同的测试目的,不同的性能关注点)

2、查找瓶颈时按以下顺序,由易到难。

服务器硬件瓶颈-〉网络瓶颈(对局域网,可以不考虑)-〉服务器操作系统瓶颈(参数配置)-〉中间件瓶颈(参数配置,数据库,web服务器等)-〉应用瓶颈(SQL语句、数据库设计、业务逻辑、算法等)注:以上过程并不是每个分析中都需要的,要根据测试目的和要求来确定分析的深度。对一些要求低的,我们分析到应用系统在将来大的负载压力(并发用户数、数据量)下,系统的硬件瓶颈在哪儿就够了。分段排除法很有效。

分析的信息来源:1、根据场景运行过程中的错误提示信息;

2、根据测试结果收集到的监控指标数据。

一、错误提示分析

分析实例:

1、Error:“10.10.10.30:8080〃:[10060]Connection

Error::Server“10.10.10.30〃

分析:

A、应用服务死掉(小用户时:程序上的问题。程序上处理数据库的问题)

B、应用服务没有死(应用服务参数设置问题)

例:在许多客户端连接Weblogic应用服务器被拒绝,而在服务器端没有错误显示,则有可能是Weblogic中的server元素的AeptBacklog属性值设得过低。如果连接时收到消息,说明应提高该值,每次增加25%

C、数据库的连接(1、在应用服务的性能参数可能太小了;2、数据库启动的最大连接数(跟硬件的内存有关)。)

分析:可能是以下原因造成

A、誉丛应用服务参庆掘樱数设置太大导致服务器的瓶颈;B、页面中图片太多;C、在程序处理表的时候检查字段太大多。

二.监控指标数据分析

1、最大并发用户数:

应用系统在当前环境(硬件环境、网络环境、软件环境(参数配置))下能承受的最大并发用户数。在方案运行中,如果出现了大于3个用户的业务操作失败,或出现了服务器shutdown的情况,则说明在当前环境下,系统承受不了当前并发用户的负载压力,那么最大并发用户数就是前一个没有出现这种现象的并发用户数。如果测得的最大并发用户数到达了性能要求,且各服务器资源情况良好,业务操作响应时间也达到了用户要求,那么可行。否则,再根据各服务器的资源情况和业务操作响应时间进一步分析原因所在。

2、业务操作响应时间:

分析方案运行情况应从平均事务响应时间图和事务性能摘要图开始。使用“事务性能摘要”图,可以确定在方案执行期间响应时间过长的事务。细分事务并分析每个页面组件的性能。如果服务器耗时过长,请使用相应的服务器图确定有问题的服务器度量并查明服务器性能下降的原因。如果网络耗时过长,请使用“网络监视器”图确定导致性能瓶颈的网络问题

3、服务器资源监控指标:内存:

1、UNIX资源监控中指标内存页交换速率(Pagingrate),如散衡果该值偶尔走高,表明当时有线程竞争内存。如果持续很高,则内存可能是瓶颈。也可能是内存访问命中率低。

2、Windows资源监控中,如果Process计数器和ProcessWorkingSet计数器的值在长时间内持续升高,同时Memory计数器的值持续降低,则很可能存在内存泄漏。

内存资源成为系统性能的瓶颈的征兆:很高的换页率();进程进入不活动状态;交换区所有磁盘的活动次数可高;可高的全局系统CPU利用率;内存不够出错()。

处理器:

1、UNIX资源监控(Windows操作系统同理)中指标CPU占用率(),如果该值持续超过95%,表明瓶颈是CPU。可以考虑增加一个处理器或换一个更快的处理器。如果服务器专用于SQLServer,可接受的最大上限是80-85%合理使用的范围在60%至70%。

2、Windows资源监控中,如果System大于2,而处理器利用率()一直很低,则存在着处理器阻塞。

CPU资源成为系统性能的瓶颈的征兆:很慢的响应时间();CPU空闲时间为零();过高的用户占用CPU时间();过高的系统占用CPU时间();长时间的有很长的运行进程队列()。

磁盘I/O:

1、UNIX资源监控(Windows操作系统同理)中指标磁盘交换率(Diskrate),如果该参数值一直很高,表明I/O有问题。可考虑更换更快的硬盘系统。

2、Windows资源监控中,如果DiskTime和Avg.DiskQueueLength的值很高,而PageReads/sec页面读取操作速率很低,则可能存在磁盘瓶径。

I/O资源成为系统性能的瓶颈的征兆:过高的磁盘利用率(highdiskutilization);

太长的磁盘等待队列(largediskqueuelength);

等待磁盘I/O的时间所占的百分率太高(/O);

太高的物理I/O速率:largephysicalI/Orate(notsufficientinitself);

过低的缓存命中率(lowbuffercachehitratio(notsufficientinitself));

太长的运行进程队列,但CPU却空闲(largerunqueuewithidleCPU)。

4、数据库服务器:

SQLServer数据库:

1、SQLServer资源监控中指标缓存点击率(CacheHitRatio),该值越高越好。如果持续低于80%,应考虑增加内存。

2、如果FullScans/sec(全表扫描/秒)计数器显示的值比1或2高,则应分析你的查询以确定是否确实需要全表扫描,以及SQL查询是否可以被优化。

3、NumberofDeadlocks/sec(死锁的数量/秒):死锁对应用程序的可伸缩性非常有害,并且会导致恶劣的用户体验。该计数器的值必须为0。

4、LockRequests/sec(锁请求/秒),通过优化查询来减少读取次数,可以减少该计数器的值。

Oracle数据库:

1、如果自由内存接近于0而且库快存或数据字典快存的命中率小于0.90,那么需要增加SHARED_POOL_SIZE的大小。

快存(共享SQL区)和数据字典快存的命中率:select(sum(pins-reloads))/sum(pins)fromv$librarycache;

select(sum(gets-getmisses))/sum(gets)fromv$rowcache;

自由内存:select*fromv$sgastatwherename=‘freememory’。

2、如果数据的缓存命中率小于0.90,那么需要加大DB_BLOCK_BUFFERS参数的值(单位:块)。

缓冲区高速缓存命中率:selectname,valuefromv$sysstatwherenamein(‘dbblockgets’,‘consistentgets’‘physicalreads’)HitRatio=1-(physicalreads/(dbblockgetsconsistentgets))。

3、如果日志缓冲区申请的值较大,则应加大LOG_BUFFER参数的值。

日志缓冲区的申请情况:selectname,valuefromv$sysstatwherename=‘redologspacerequests’。

4、如果内存排序命中率小于0.95,则应加大SORT_AREA_SIZE以避免磁盘排序。

内存排序命中率:selectround((100*b.value)/decode((a.valueb.value),0,1,(a.valueb.value)),2)fromv$sysstata,v$sysstatbwherea.name=’sorts(disk)’andb.name=’sorts(memory)’

注:上述SQLServer和Oracle数据库分析,只是一些简单、基本的分析,特别是Oracle数据库的分析和优化,是一门专门的技术,进一步的分析可查相关资料。

❺ 如何打造高性能大数据分析平台

大数据分析系统作为一个关键性的系统在各个公司迅速崛起。但是这种海量规模的数据带来了前所未有的性能挑战。同时,如果大数据分析系统无法在第一时间为运营决策提供关键数据,那么这样的大数据分析系统一文不值。本文将从技术无关的角度讨论一些提高性能的方法。下面我们将讨论一些能够应用在大数据分析系统不同阶段的技巧和准则(例如数据提取,数据清洗,处理,存储,以及介绍)。本文应作为一个通用准则,以确保最终的大数据分析平台能满足性能要求。1.大数据是什么?大数据是最近IT界最常用的术语之一。然而对大数据的定义也不尽相同,所有已知的论点例如结构化的和非结构化、大规模的数据等等都不够完整。大数据系统通常被认为具有数据的五个主要特征,通常称为数据的5Vs。分别是大规模,多样性,高效性、准确性和价值性。互联网是个神奇的大网,大数据开发和软件定制也是一种模式,这里提供最详细的报价,如果真的想做,可以来这里,这个手技的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,想说的是,除非想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。据Gartner称,大规模可以被定义为“在本(地)机数据采集和处理技术能力不足以为用户带来商业价值。当现有的技术能够针对性的进行改造后来处理这种规模的数据就可以说是一个成功的大数据解决方案。这种大规模的数据没将不仅仅是来自于现有的数据源,同时也会来自于一些新兴的数据源,例如常规(手持、工业)设备,日志,汽车等,当然包括结构化的和非结构化的数据。据Gartner称,多样性可以定义如下:“高度变异的信息资产,在生产和消费时不进行严格定义的包括多种形式、类型和结构的组合。同时还包括以前的历史数据,由于技术的变革历史数据同样也成为多样性数据之一“。高效性可以被定义为来自不同源的数据到达的速度。从各种设备,传感器和其他有组织和无组织的数据流都在不断进入IT系统。由此,实时分析和对于该数据的解释(展示)的能力也应该随之增加。根据Gartner,高效性可以被定义如下:“高速的数据流I/O(生产和消费),但主要聚焦在一个数据集内或多个数据集之间的数据生产的速率可变上”。准确性,或真实性或叫做精度是数据的另一个重要组成方面。要做出正确的商业决策,当务之急是在数据上进行的所有分析必须是正确和准确(精确)的。大数据系统可以提供巨大的商业价值。像电信,金融,电子商务,社交媒体等,已经认识到他们的数据是一个潜在的巨大的商机。他们可以预测用户行为,并推荐相关产品,提供危险交易预警服务,等等。与其他IT系统一样,性能是大数据系统获得成功的关键。本文的中心主旨是要说明如何让大数据系统保证其性能。2.大数据系统应包含的功能模块大数据系统应该包含的功能模块,首先是能够从多种数据源获取数据的功能,数据的预处理(例如,清洗,验证等),存储数据,数据处理、数据分析等(例如做预测分析??,生成在线使用建议等等),最后呈现和可视化的总结、汇总结果。下图描述了大数据系统的这些高层次的组件描述本节的其余部分简要说明了每个组分,如图1。2.1各种各样的数据源当今的IT生态系统,需要对各种不同种类来源的数据进行分析。这些来源可能是从在线Web应用程序,批量上传或feed,流媒体直播数据,来自工业、手持、家居传感的任何东西等等。显然从不同数据源获取的数据具有不同的格式、使用不同的协议。例如,在线的Web应用程序可能会使用SOAP/XML格式通过HTTP发送数据,feed可能会来自于CSV文件,其他设备则可能使用MQTT通信协议。由于这些单独的系统的性能是不在大数据系统的控制范围之内,并且通常这些系统都是外部应用程序,由第三方供应商或团队提供并维护,所以本文将不会在深入到这些系统的性能分析中去。2.2数据采集第一步,获取数据。这个过程包括分析,验证,清洗,转换,去重,然后存到适合你们公司的一个持久化设备中(硬盘、存储、云等)。在下面的章节中,本文将重点介绍一些关于如何获取数据方面的非常重要的技巧。请注意,本文将不讨论各种数据采集技术的优缺点。2.3存储数据第二步,一旦数据进入大数据系统,清洗,并转化为所需格式时,这些过程都将在数据存储到一个合适的持久化层中进行。在下面的章节中,本文将介绍一些存储方面的最佳实践(包括逻辑上和物理上)。在本文结尾也会讨论一部分涉及数据安全方面的问题。2.4数据处理和分析第三步,在这一阶段中的一部分干净数据是去规范化的,包括对一些相关的数据集的数据进行一些排序,在规定的时间间隔内进行数据结果归集,执行机器学习算法,预测分析等。在下面的章节中,本文将针对大数据系统性能优化介绍一些进行数据处理和分析的最佳实践。2.5数据的可视化和数据展示最后一个步骤,展示经过各个不同分析算法处理过的数据结果。该步骤包括从预先计算汇总的结果(或其他类似数据集)中的读取和用一种友好界面或者表格(图表等等)的形式展示出来。这样便于对于数据分析结果的理解。3.数据采集中的性能技巧数据采集是各种来自不同数据源的数据进入大数据系统的第一步。这个步骤的性能将会直接决定在一个给定的时间段内大数据系统能够处理的数据量的能力。数据采集??过程基于对该系统的个性化需求,但一些常用执行的步骤是-解析传入数据,做必要的验证,数据清晰,例如数据去重,转换格式,并将其存储到某种持久层。涉及数据采集过程的逻辑步骤示如下图所示:下面是一些性能方面的技巧:来自不同数据源的传输应该是异步的。可以使用文件来传输、或者使用面向消息的(MoM)中间件来实现。由于数据异步传输,所以数据采集过程的吞吐量可以大大高于大数据系统的处理能力。异步数据传输同样可以在大数据系统和不同的数据源之间进行解耦。大数据基础架构设计使得其很容易进行动态伸缩,数据采集的峰值流量对于大数据系统来说算是安全的。如果数据是直接从一些外部数据库中抽取的,确保拉取数据是使用批量的方式。如果数据是从feedfile解析,请务必使用合适的解析器。例如,如果从一个XML文件中读取也有不同的解析器像JDOM,SAX,DOM等。类似地,对于CSV,JSON和其它这样的格式,多个解析器和API是可供选择。选择能够符合需求的性能最好的。优先使用内置的验证解决方案。大多数解析/验证工作流程的通常运行在服务器环境(ESB/应用服务器)中。大部分的场景基本上都有现成的标准校验工具。在大多数的情况下,这些标准的现成的工具一般来说要比你自己开发的工具性能要好很多。类似地,如果数据XML格式的,优先使用XML(XSD)用于验证。即使解析器或者校等流程使用自定义的脚本来完成,例如使用java优先还是应该使用内置的函数库或者开发框架。在大多数的情况下通常会比你开发任何自定义代码快得多。尽量提前滤掉无效数据,以便后续的处理流程都不用在无效数据上浪费过多的计算能力。大多数系统处理无效数据的做法通常是存放在一个专门的表中,请在系统建设之初考虑这部分的数据库存储和其他额外的存储开销。如果来自数据源的数据需要清洗,例如去掉一些不需要的信息,尽量保持所有数据源的抽取程序版本一致,确保一次处理的是一个大批量的数据,而不是一条记录一条记录的来处理。一般来说数据清洗需要进行表关联。数据清洗中需要用到的静态数据关联一次,并且一次处理一个很大的批量就能够大幅提高数据处理效率。数据去重非常重要这个过程决定了主键的是由哪些字段构成。通常主键都是时间戳或者id等可以追加的类型。一般情况下,每条记录都可能根据主键进行索引来更新,所以最好能够让主键简单一些,以保证在更新的时候检索的性能。来自多个源接收的数据可以是不同的格式。有时,需要进行数据移植,使接收到的数据从多种格式转化成一种或一组标准格式。和解析过程一样,我们建议使用内置的工具,相比于你自己从零开发的工具性能会提高很多。数据移植的过程一般是数据处理过程中最复杂、最紧急、消耗资源最多的一步。因此,确保在这一过程中尽可能多的使用并行计算。一旦所有的数据采集的上述活动完成后,转换后的数据通常存储在某些持久层,以便以后分析处理,综述,聚合等使用。多种技术解决方案的存在是为了处理这种持久(RDBMS,NoSQL的分布式文件系统,如Hadoop和等)。谨慎选择一个能够最大限度的满足需求的解决方案。4.数据存储中的性能技巧一旦所有的数据采集步骤完成后,数据将进入持久层。在本节中将讨论一些与数据数据存储性能相关的技巧包括物理存储优化和逻辑存储结构(数据模型)。这些技巧适用于所有的数据处理过程,无论是一些解析函数生的或最终输出的数据还是预计算的汇总数据等。首先选择数据范式。您对数据的建模方式对性能有直接的影响,例如像数据冗余,磁盘存储容量等方面。对于一些简单的文件导入数据库中的场景,你也许需要保持数据原始的格式,对于另外一些场景,如执行一些分析计算聚集等,你可能不需要将数据范式化。大多数的大数据系统使用NoSQL数据库替代RDBMS处理数据。不同的NoSQL数据库适用不同的场景,一部分在select时性能更好,有些是在插入或者更新性能更好。数据库分为行存储和列存储。具体的数据库选型依赖于你的具体需求(例如,你的应用程序的数据库读写比)。同样每个数据库都会根据不同的配置从而控制这些数据库用于数据库复制备份或者严格保持数据一致性?这些设置会直接影响数据库性能。在数据库技术选型前一定要注意。压缩率、缓冲池、超时的大小,和缓存的对于不同的NoSQL数据库来说配置都是不同的,同时对数据库性能的影响也是不一样的。数据Sharding和分区是这些数据库的另一个非常重要的功能。数据Sharding的方式能够对系统的性能产生巨大的影响,所以在数据Sharding和分区时请谨慎选择。并非所有的NoSQL数据库都内置了支持连接,排序,汇总,过滤器,索引等。如果有需要还是建议使用内置的类似功能,因为自己开发的还是不灵。NoSQLs内置了压缩、编解码器和数据移植工具。如果这些可以满足您的部分需求,那么优先选择使用这些内置的功能。这些工具可以执行各种各样的任务,如格式转换、压缩数据等,使用内置的工具不仅能够带来更好的性能还可以降低网络的使用率。许多NoSQL数据库支持多种类型的文件系统。其中包括本地文件系统,分布式文件系统,甚至基于云的存储解决方案。如果在交互式需求上有严格的要求,否则还是尽量尝试使用NoSQL本地(内置)文件系统(例如HBase使用HDFS)。这是因为,如果使用一些外部文件系统/格式,则需要对数据进行相应的编解码/数据移植。它将在整个读/写过程中增加原本不必要的冗余处理。大数据系统的数据模型一般来说需要根据需求用例来综合设计。与此形成鲜明对比的是RDMBS数据建模技术基本都是设计成为一个通用的模型,用外键和表之间的关系用来描述数据实体与现实世界之间的交互。在硬件一级,本地RAID模式也许不太适用。请考虑使用SAN存储。5.数据处理分析中的性能技巧数据处理和分析是一个大数据系统的核心。像聚合,预测,聚集,和其它这样的逻辑操作都需要在这一步完成。本节讨论一些数据处理性能方面的技巧。需要注意的是大数据系统架构有两个组成部分,实时数据流处理和批量数据处理。本节涵盖数据处理的各个方面。在细节评估和数据格式和模型后选择适当的数据处理框架。其中一些框架适用于批量数据处理,而另外一些适用于实时数据处理。同样一些框架使用内存模式,另外一些是基于磁盘io处理模式。有些框架擅长高度并行计算,这样能够大大提高数据效率。基于内存的框架性能明显优于基于磁盘io的框架,但是同时成本也可想而知。概括地说,当务之急是选择一个能够满足需求的框架。否则就有可能既无法满足功能需求也无法满足非功能需求,当然也包括性能需求。一些这些框架将数据划分成较小的块。这些小数据块由各个作业独立处理。协调器管理所有这些独立的子作业?在数据分块是需要当心。该数据快越小,就会产生越多的作业,这样就会增加系统初始化作业和清理作业的负担。如果数据快太大,数据传输可能需要很长时间才能完成。这也可能导致资源利用不均衡,长时间在一台服务器上运行一个大作业,而其他服务器就会等待。不要忘了查看一个任务的作业总数。在必要时调整这个参数。最好实时监控数据块的传输。在本机机型io的效率会更高,这么做也会带来一个副作用就是需要将数据块的冗余参数提高(一般hadoop默认是3份)这样又会反作用使得系统性能下降。此外,实时数据流需要与批量数据处理的结果进行合并。设计系统时尽量减少对其他作业的影响。大多数情况下同一数据集需要经过多次计算。这种情况可能是由于数据抓取等初始步骤就有报错,或者某些业务流程发生变化,值得一提的是旧数据也是如此。设计系统时需要注意这个地方的容错。这意味着你可能需要存储原始数据的时间较长,因此需要的存储。数据结果输出后应该保存成用户期望看到的格式。例如,如果最终的结果是用户要求按照每周的时间序列汇总输出,那么你就要将结果以周为单位进行汇总保存。为了达到这个目标,大数据系统的数据库建模就要在满足用例的前提下进行。例如,大数据系统经常会输出一些结构化的数据表,这样在展示输出上就有很大的优势。更常见的是,这可能会这将会让用户感觉到性能问题。例如用户只需要上周的数据汇总结果,如果在数据规模较大的时候按照每周来汇总数据,这样就会大大降低数据处理能力。一些框架提供了大数据查询懒评价功能。在数据没有在其他地方被使用时效果不错。实时监控系统的性能,这样能够帮助你预估作业的完成时间。6.数据可视化和展示中的性能技巧精心设计的高性能大数据系统通过对数据的深入分析,能够提供有价值战略指导。这就是可视化的用武之地。良好的可视化帮助用户获取数据的多维度透视视图。需要注意的是传统的BI和报告工具,或用于构建自定义报表系统无法大规模扩展满足大数据系统的可视化需求。同时,许多COTS可视化工具现已上市。本文将不会对这些个别工具如何进行调节,而是聚焦在一些通用的技术,帮助您能打造可视化层。确保可视化层显示的数据都是从最后的汇总输出表中取得的数据。这些总结表可以根据时间短进行汇总,建议使用分类或者用例进行汇总。这么做可以避免直接从可视化层读取整个原始数据。这不仅最大限度地减少数据传输,而且当用户在线查看在报告时还有助于避免性能卡顿问题。重分利用大化可视化工具的缓存。缓存可以对可视化层的整体性能产生非常不错的影响。物化视图是可以提高性能的另一个重要的技术。大部分可视化工具允许通过增加线程数来提高请求响应的速度。如果资源足够、访问量较大那么这是提高系统性能的好法。尽量提前将数据进行预处理,如果一些数据必须在运行时计算请将运行时计算简化到最小。可视化工具可以按照各种各样的展示方法对应不同的读取策略。其中一些是离线模式、提取模式或者在线连接模式。每种服务模式都是针对不同场景设计的。同样,一些工具可以进行增量数据同步。这最大限度地减少了数据传输,并将整个可视化过程固化下来。保持像图形,图表等使用最小的尺寸。大多数可视化框架和工具的使用可缩放矢量图形(SVG)。使用SVG复杂的布局可能会产生严重的性能影响。7.数据安全以及对于性能的影响像任何IT系统一样安全性要求也对大数据系统的性能有很大的影响。在本节中,我们讨论一下安全对大数据平台性能的影响。-首先确保所有的数据源都是经过认证的。即使所有的数据源都是安全的,并且没有针对安全方面的需求,那么你可以灵活设计一个安全模块来配置实现。-数据进过一次认证,那么就不要进行二次认证。如果实在需要进行二次认证,那么使用一些类似于token的技术保存下来以便后续继续使用。这将节省数据一遍遍认证的开销。-您可能需要支持其他的认证方式,例如基于PKI解决方案或Kerberos。每一个都有不同的性能指标,在最终方案确定前需要将其考虑进去。-通常情况下数据压缩后进入大数据处理系统。这么做好处非常明显不细说。-针对不同算法的效率、对cpu的使用量你需要进行比较来选出一个传输量、cpu使用量等方面均衡的压缩算法。-同样,评估加密逻辑和算法,然后再选择。-明智的做法是敏感信息始终进行限制。-在审计跟踪表或登录时您可能需要维护记录或类似的访问,更新等不同的活动记录。这可能需要根据不同的监管策略和用户需求个性化的进行设计和修改。-注意,这种需求不仅增加了数据处理的复杂度,但会增加存储成本。-尽量使用下层提供的安全技术,例如操作系统、数据库等。这些安全解决方案会比你自己设计开发性能要好很多。8.总结本文介绍了各种性能方面的技巧,这些技术性的知道可以作为打造大数据分析平台的一般准则。大数据分析平台非常复杂,为了满足这种类型系统的性能需求,需要我们从开始建设的时候进行考量。本文介绍的技术准则可以用在大数据平台建设的各个不同阶段,包括安全如何影响大数据分析平台的性能。

❻ 如何优化数据库的性能

--数据库性能调优
--1.聚集索引、主键
--2.尽量不要用临时表
--3.多多使用事务
--4.表设计要规范
--5.不要使用游标
--6.避免死锁
--7.不要打开大数据集
--8.最好不要select *
--9.不要使用text数据类型,用varchar
--10.不要给诸如“性别”列创建索引
--11.不要使用Insert插入大量的数据
--12.尽量用join代替where,因为where进行全表搜索

阅读全文

与数据库性能分析怎么用相关的资料

热点内容
二手房买卖交易流程是什么 浏览:939
充红包银行拒绝交易怎么回事 浏览:195
抖音数据清空了怎么恢复 浏览:470
技术学院指哪些 浏览:516
开店做什么生意好加盟代理 浏览:31
增益开关技术是什么 浏览:499
隐藏的程序什么也看不见 浏览:817
工程技术专业能考什么证书 浏览:358
百能的不锈钢橱柜市场什么价位 浏览:209
三岔口菜市场在哪里 浏览:309
跳蚤市场图书怎么做 浏览:233
七月份的数据有什么用 浏览:580
废锡渣多少钱一公斤市场价 浏览:562
淘手游交易金额多少才能立案 浏览:782
如何做好带货小程序 浏览:77
2020年周边有哪些新建农贸市场 浏览:283
涂料的产品怎么样 浏览:584
怎么多循环一次程序 浏览:160
大商所交易系统是什么 浏览:388
徐步天交易要多少天 浏览:23