导航:首页 > 数据处理 > 如何分布式并发修改数据库

如何分布式并发修改数据库

发布时间:2023-05-30 13:26:12

❶ 深入理解分布式事务,高并发下分布式事务的解决方案

1、什么是分布式事务

分布式事务就是指事务的参与者、支持事务的服务器、资源服务器以及事务管理器分别位于不同的分布式系统的不同节点之上。以上是网络的解释,简单的说,就是一次大的操作由不同的小操作组成,这些小的操作分布在不同的服务器上,且属于不同的应用,分布式事务需要保证这些小操作要么全部成功,要么全部失败。本质上来说,分布式事务就是为了保证不同数据库的数据一致性。

2、分布式事务的产生的原因

2.1、数据库分库分表

当数据库单表一年产生的数据超过1000W,那么就要考虑分库分表,具体分库分表的原理在此不做解释,以后有空详细说,简单的说就是原来的一个数据库变成了多个数据库。这时候,如果一个操作既访问01库,又访问02库,而且要保证数据的一致性,那么就要用到分布式事务。

2.2、应用SOA化

所谓的SOA化,就是业务的服务化。比如原来单机支撑了整个电商网站,现在对整个网站进行拆解,分离出了订单中心、用户中心、库存中心。对于订单中心,有专门的数据库存储订单信息,用户中心也有专门的数据库存储用户信息,库存中心也会有专门的数据库存储库存信息。这时候如果要同时对订单和库存进行操作,那么就会涉及到订单数据库和库存数据库,为了保证数据一致性,就需要用到分布式事务。

以上两种情况表象不同,但是本质相同,都是因为要操作的数据库变多了!

3、事务的ACID特性

3.1、原子性(A)

所谓的原子性就是说,在整个事务中的所有操作,要么全部完成,要么全部不做,没有中间状态。对于事务在执行中发生错误,所有的操作都会被回滚,整个事务就像从没被执行过一样。

3.2、一悔凯兄致性(C)

事务的执行必须保证系统的一致性,就拿转账为例,A有500元,B有300元,如果在一个事务里A成功转给B50元,那么不管并发多少,不管发生什么,只要事务执行成功了,那么最后A账户一定是450元,B账户一定是350元。

3.3、隔离性(I)

所谓的隔离性就是说,事务与事务之间不会互相影响,一个事务的中间状态不会被其他事务感知。

3.4、持久性(D)

所谓的持久性,就是说一单事务完成了,那么事务对数据所做的变更就完全保存在了数据库中,即使发生停电,系统宕机也是如此。

4、分布式事务的应用场景

4.1、支付

最经典的场景就是支付了,一笔支付,是对买家账户进行扣款,同时对卖家账户进行加钱,这些操作必须在一个事务里执行,要么全孙毁部成功,要么全部失败。而对于买家账户属于买家中心,对应的是买家数据库,而卖家账户属于卖家中心,对应的是卖家数据库,对不同数据库的操作必然需要引入分布式事务。

4.2、在线下单

买家在电商平台下单,往往会涉及到两个动作,一个是扣库存,第二个是更新订单状态,库存和订单一般属于不同的数据库,需要使用分布式事务保证数据一致性。

5、常见的分布式事务解决方案

5.1、基于XA协议的两阶段提交

XA是一个分布式事务协议,由Tuxedo提出。XA中大致分为两部分:事务管理器和本地资源管理器。其中本地资源管理器往往由数据库实现,比如Oracle、DB2这些商业数据库都实现了XA接口,而事务管理器作为全局的调度者,负责各个本地资源的提交和回滚。XA实现分布式事务的原理如下:

总的来说,XA协议比较简单,而且一旦商业数据库实现了XA协议,使用分布式事务的成本也比较低。但是,XA也有致命的缺点,那就是性能不理想,特别是在交易下单链路,往往并发量很高,XA无法满足高并发场景。XA目前在商业数据库支持的比较理想,在mysql数据库中支持的不太理想,mysql的XA实现,没有记录prepare阶段日志,主备切换回导致主库与备库数据不一致。许多nosql也没有支持XA,这让XA的应用场景变得非常狭隘。

5.2、消息事务+最终一致性

所谓的消息事务就是基于消息中间件的两阶段提交,本质上是对消息中间件的一种特殊利用,它是将本地事务和发消息放在了一个分布式事务里,保证要么本地操作成功成功并且对外发消息成功,要么两者都失败,开源的RocketMQ就支持这一特性,具体原理如下:

1、A系统向消息中间件发送一条预备消息

2、碧袭消息中间件保存预备消息并返回成功

3、A执行本地事务

4、A发送提交消息给消息中间件

通过以上4步完成了一个消息事务。对于以上的4个步骤,每个步骤都可能产生错误,下面一一分析:

步骤一出错,则整个事务失败,不会执行A的本地操作步骤二出错,则整个事务失败,不会执行A的本地操作步骤三出错,这时候需要回滚预备消息,怎么回滚?答案是A系统实现一个消息中间件的回调接口,消息中间件会去不断执行回调接口,检查A事务执行是否执行成功,如果失败则回滚预备消息步骤四出错,这时候A的本地事务是成功的,那么消息中间件要回滚A吗?答案是不需要,其实通过回调接口,消息中间件能够检查到A执行成功了,这时候其实不需要A发提交消息了,消息中间件可以自己对消息进行提交,从而完成整个消息事务基于消息中间件的两阶段提交往往用在高并发场景下,将一个分布式事务拆成一个消息事务(A系统的本地操作+发消息)+B系统的本地操作,其中B系统的操作由消息驱动,只要消息事务成功,那么A操作一定成功,消息也一定发出来了,这时候B会收到消息去执行本地操作,如果本地操作失败,消息会重投,直到B操作成功,这样就变相地实现了A与B的分布式事务。原理如下:

虽然上面的方案能够完成A和B的操作,但是A和B并不是严格一致的,而是最终一致的,我们在这里牺牲了一致性,换来了性能的大幅度提升。当然,这种玩法也是有风险的,如果B一直执行不成功,那么一致性会被破坏,具体要不要玩,还是得看业务能够承担多少风险。

5.3、TCC编程模式

所谓的TCC编程模式,也是两阶段提交的一个变种。TCC提供了一个编程框架,将整个业务逻辑分为三块:Try、Confirm和Cancel三个操作。以在线下单为例,Try阶段会去扣库存,Confirm阶段则是去更新订单状态,如果更新订单失败,则进入Cancel阶段,会去恢复库存。总之,TCC就是通过代码人为实现了两阶段提交,不同的业务场景所写的代码都不一样,复杂度也不一样,因此,这种模式并不能很好地被复用。

6、总结

分布式事务,本质上是对多个数据库的事务进行统一控制,按照控制力度可以分为:不控制、部分控制和完全控制。不控制就是不引入分布式事务,部分控制就是各种变种的两阶段提交,包括上面提到的消息事务+最终一致性、TCC模式,而完全控制就是完全实现两阶段提交。部分控制的好处是并发量和性能很好,缺点是数据一致性减弱了,完全控制则是牺牲了性能,保障了一致性,具体用哪种方式,最终还是取决于业务场景。作为技术人员,一定不能忘了技术是为业务服务的,不要为了技术而技术,针对不同业务进行技术选型也是一种很重要的能力

❷ 分布式数据库系统(DDBS)概述

一 什么是分布式数据库

分布式数据库系统是在集中式数据库系统的基础上发展来的 是数据库技术与网络技术结合的产物

分布式数据库系统有两种 一种是物理上分布的 但逻辑上却是集中的 这种分布式数据库只适宜用途比较单一的 不大的单位或部门 另一种分布式数据库系统在物理上和逻辑上都是分布的 也就是所谓联邦式分布数据库系统 由于组成联邦的各个子数据库系统是相对 自治 的 这种系统可以容纳多种不同用途的 差异较大的数据库 比较适宜于大范围内数据库的集成

分布式数据库系统(DDBS)包含分布式数据库管理系统(DDBMS)和分布式数据库(DDB)

在分布式数据库系统中 一个应用程序可以对数据库进行透明操作 数据库中的数据分别在不同的局部数据库中存储 由不同的DBMS进行管理 在不同的机器上运行 由不同的操作系统支持 被不同的通信网络连接在一起

一个分布式数据库在逻辑上是一个统一的整体 即在用户面前为单个逻辑数据库 在物理上则是分别存储在不同的物理节点上 一个应用程序通过网络的连接可以访问分布在不同地理位置的数据库 它的分布性表现在数据库中的数据不是存储在同一场地 更确切地讲 不存储在同一计算机的存储设备上 这就是与集中式数据库的区别 从用户的角度看 一个分布式数据库系统在逻辑上和集中式数据库系统一样 用户可以在任何一个场地执行全局应用 就好那些数据是存储在同一台计算机上 有单个数据库管理系统(DBMS)管理一样 用户并没有什么感觉不一样

分布式数据库中每一个数据库服务器合作地维护全局数据库的一致性

分布式数据库系统是一个客户/服务器体系结构

在橡仿系统中的每一台计算机称为结点 如果一结点具有管理数据库软件 该结点称为数据库服务器 如果一个结点为请求服务器的信息的一应用 该结点称为客户 在ORACLE客户 执行数据库应用 可存取数据信息和与用户交互 在服务器 执行ORACLE软件 处理对ORACLE数据库并发 共享数据存取 ORACLE允许上述两部分在同一台计算机上 但当客户部分和服务器部分是由网连接的不同计算机上时 更有效

分布处理是由多台处理机分担单个任务的处理 在ORACLE数据库系统中分布处理的例子如

客户和服务器是位于网络连接的不同计算机上

单台计算机上有多个处理器 不同处理器分别执行客户应用

参与分布式数据库的每一服务器是分别地独立地管理数据库 好像每一数据库不是网络化的数据库 每一个数据库独立地被管理 称为场地自治性 场地自治性有下列好处

◆系统的结点可反映公司的逻辑组织

◆由局部数据梁培纤库管理员控制局部数据 这样每一个数据库管理员责任域要小一些 可更好管理

◆只要一个数据库和网络是可用 那么全局数据库可部分可用 不会因一个数据库的故障而停止全部操作或引起性能瓶颈

◆故障恢复通常在单个结点上进行

◆每个局部数据库存在一个数据字典

◆结点可独立地升级软件

可从分布式数据库的所有结点存取模式对象 因此正像非分布的局部的DBMS 必须提供一种机制 可在局部数据库中引用一个对象 分布式DBMS必须提供一种命名模式 以致中清分布式数据库中一个对象可在应用中唯一标识和引用 一般在层次结构的每一层实施唯一性 分布式DBMS简单地扩充层次命名模型 实施在网络上唯一数据库命名 因此一个对象的全局对象名保证在分布式数据库内是唯一

ORACLE允许在SQL语句中使用全局对象名引用分布式数据库中的模式对象(表 视图和过程) 在ORACLE中 一个模式对象的全局名由三部分组成 包含对象的模式名 对象名 数据库名 其形式如

SCOTT EMP@SALES DIVISION ACME

一个远程查询为一查询 是从一个或多个远程表中选择信息 这些表驻留在同一个远程结点

一个分布式查询可从两个或多个结点检索数据 一个分布式更新可修改两个或两个以上结点的数据

一个远程事务为一个事务 包含一人或多个远程语句 它所引用的全部是在同一个远程结点上 一个分布式事务中一个事务 包含一个或多个语句修改分布式数据库的两个或多个不同结点的数据

在分布式数据库中 事务控制必须在网络上直辖市 保证数据一致性 两阶段提交机制保证参与分布式事务的全部数据库服务器是全部提交或全部回滚事务中的语句

ORACLE分布式数据库系统结构可由ORACLE数据库管理员为终端用户和应用提供位置透明性 利用视图 同义词 过程可提供ORACLE分布式数据库系统中的位置透明性

ORACLE提供两种机制实现分布式数据库中表重复的透明性 表快照提供异步的表重复;触发器实现同步的表的重复 在两种情况下 都实现了对表重复的透明性

在单场地或分布式数据库中 所有事务都是用MIT或ROLLBACK语句中止

二 分布式数据库系统的分类

( ) 同构同质型DDBS 各个场地都采用同一类型的数据模型(譬如都是关系型) 并且是同一型号的DBMS

( )同构异质型DDBS 各个场地采用同一类型的数据模型 但是DBMS的型号不同 譬如DB ORACLE SYBASE SQL Server等

( )异构型DDBS 各个场地的数据模型的型号不同 甚至类型也不同 随着计算机网络技术的发展 异种机联网问题已经得到较好的解决 此时依靠异构型DDBS就能存取全网中各种异构局部库中的数据

三 分布式数据库系统主要特点

DDBS的基本特点

( )物理分布性 数据不是存储在一个场地上 而是存储在计算机网络的多个场地上

逻辑整体性 数据物理分布在各个场地 但逻辑上是一个整体 它们被所有用户(全局用户)共享 并由一个DDBMS统一管理

( )场地自治性 各场地上的数据由本地的DBMS管理 具有自治处理能力 完成本场地的应用(局部应用)

( )场地之间协作性 各场地虽然具有高度的自治性 但是又相互协作构成一个整体

DDBS的其他特点

( )数据独立性

( )集中与自治相结合的控制机制

( )适当增加数据冗余度

( )事务管理的分布性

四 分布式数据库系统的优点

( )更适合分布式的管理与控制

分布式数据库系统的结构更适合具有地理分布特性的组织或机构使用 允许分布在不同区域 不同级别的各个部门对其自身的数据实行局部控制 例如 实现全局数据在本地录入 查询 维护 这时由于计算机资源靠近用户 可以降低通信代价 提高响应速度 而涉及其他场地数据库中的数据只是少量的 从而可以大大减少网络上的信息传输量;同时 局部数据的安全性也可以做得更好

( )具有灵活的体系结构

集中式数据库系统强调的是集中式控制 物理数据库是存放在一个场地上的 由一个DBMS集中管理 多个用户只可以通过近程或远程终端在多用户操作系统支持下运行该DBMS来共享集中是数据库中的数据 而分布式数据库系统的场地局部DBMS的自治性 使得大部分的局部事务管理和控制都能就地解决 只有在涉及其他场地的数据时才需要通过网络作为全局事务来管理 分布式DBMS可以设计成具有不同程度的自治性 从具有充分的场地自治到几乎是完全集中式的控制

( )系统经济 可靠性高 可用性好

与一个大型计算机支持一个大型的集中式数据库在加一些进程和远程终端相比 由超级微型计算机或超级小型计算机支持的分布式数据库系统往往具有更高的性价比和实施灵活性 分布式系统比集中式系统具有更高的可靠性和更好的可用性 如由于数据分布在多个场地并有许多复制数据 在个别场地或个别通信链路发生故障时 不致于导致整个系统的崩溃 而且系统的局部故障不会引起全局失控

( )在一定条件下响应速度加快

如果存取的数据在本地数据库中 那么就可以由用户所在的计算机来执行 速度就快

( )可扩展性好 易于集成现有系统 也易于扩充

对于一个企业或组织 可以采用分布式数据库技术在以建立的若干数据库的基础上开发全局应用 对原有的局部数据库系统作某些改动 形成一个分布式系统 这比重建一个大型数据库系统要简单 既省时间 又省财力 物力 也可以通过增加场地数的办法 迅速扩充已有的分布式数据库系统

五 分布式数据库系统的劣势

( )通信开销较大 故障率高

例如 在网络通信传输速度不高时 系统的响应速度慢 与通信相关的因素往往导致系统故障 同时系统本身的复杂性也容易导致较高的故障率 当故障发生后系统恢复也比较复杂 可靠性有待提高

( )数据的存取结构复杂

一般来说 在分布时数据库中存取数据 比在集中时数据库中存取数据更复杂 开销更大

( )数据的安全性和保密性较难控制

在具有高度场地自治的分布时数据库中 不同场地的局部数据库管理员可以采用不同的安全措施 但是无法保证全局数据都是安全的 安全性问题式分布式系统固有的问题 因为分布式系统式通过通信网络来实现分布控制的 而通信网络本身却在保护数据的安全性和保密性方面存在弱点 数据很容易被窃取

分布式数据库的设计 场地划分及数据在不同场地的分配比较复杂 数据的划分及分配对系统的性能 响应速度及可用性等具有极大的影响 不同场地的通信速度与局部数据库系统的存取部件的存取速度相比 是非常慢的 通信系统有较高的延迟 在CPU上处理通信信息的代价很高 分布式数据库系统中要注意解决分布式数据库的设计 查询处理和优化 事务管理及并发控制和目录管理等问题

六 分布式数据库系统 数据分片

类型

水平分片

按一定的条件把全局关系的所有元组划分成若干不相交的子集 每个子集为关系的一个片段

垂直分片

把一个全局关系的属性集分成若干子集 并在这些子集上作投影运算 每个投影称为垂直分片

导出分片

又称为导出水平分片 即水平分片的条件不是本关系属性的条件 而是其他关系属性的条件

混合分片

以上三种方法的混合 可以先水平分片再垂直分片 或先垂直分片再水平分片 或其他形式 但他们的结果是不相同的

条件

( )完备性条件

必须把全局关系的所有数据映射到片段中 决不允许有属于全局关系的数据却不属于它的任何一个片段

( )可重构条件

必须保证能够由同一个全局关系的各个片段来重建该全局关系 对于水平分片可用并操作重构全局关系;对于垂直分片可用联接操作重构全局关系

( )不相交条件

要求一个全局关系被分割后所得的各个数据片段互不重叠(对垂直分片的主键除外)

七 分布式数据库系统 数据分配方式

( )集中式 所有数据片段都安排在同一个场地上

( )分割式

所有数据只有一份 它被分割成若干逻辑片段 每个逻辑片段被指派在一个特定的场地上

( )全复制式 数据在每个场地重复存储 也就是每个场地上都有一个完整的数据副本

( )混合式 这是一种介乎于分割式和全复制式之间的分配方式

八 分布式数据库系统 体系结构

数据分片和数据分配概念的分离 形成了 数据分布独立型 概念

数据冗余的显式控制 数据在各个场地的分配情况在分配模式中一目了然 便于系统管理

局部DBMS的独立性 这个特征也称为 局部映射透明性 此特征允许我们在不考虑局部DBMS专用数据模型的情况下 研究DDB管理的有关问题

九 分布式数据库管理系统

接受用户请求 并判定把它送到哪里 或必须访问哪些计算机才能满足该要求

访问网络数据字典 了解如何请求和使用其中的信息

如果目标数据存储于系统的多个计算机上 就必须进行分布式处理

通信接口功能 在用户 局部DBMS和其他计算机的DBMS之间进行协调

在一个异构型分布式处理环境中 还需提供数据和进程移植的支持 这里的异构型是指各个场地的硬件 软件之间存在着差别

分布式数据库管理系统

lishixin/Article/program/Oracle/201311/16998

❸ 如何处理大量数据并发操作

处理大量数据并发操作可以采用如下几种方法:

1.使用缓存:使用程序直接保存到内存中。或者使用缓存框架: 用一个特定的类型值来保存,以区别空数据和未缓存的两种状态。

2.数据库优化:表结构优化;SQL语句优化,语法优化和处理逻辑优化;分区;分表;索引优化;使用存储过程代替直接操作。

3.分离活跃和携数据:可以分为活跃用户和不活跃用户。

4.批量读取和延迟修改: 高并发情况可以将多个查询请求合并到一个。高并发且频繁修改的可以暂存缓存中。

5.读写分离: 数据库服务器配置多个,配置主从数据库。写用主数据库,读用从数据库。

6.分布式数据库: 将不同的表存放到不同的数据库中,然后再放到不同的服务器中。

7.NoSql和Hadoop: NoSql,not only SQL。没有关系型数据库那么多限制,比较灵活高效。Hadoop,将一个表中的数据分层多块,保存到多个节点(分布式)。每一块数据都有多个节点保正燃存(集群)。集群可以并行处理相同的数据,还可以保证数据的完整性。

拓展资料:

大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率唤清伏和多样化的信息资产。

在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。

❹ 如何处理数据库并发问题

想要知道如何处理数据并发,自然需要先了解数据并发。

什么是数据并发操作呢?
就是同一时间内,不同的线程同时对一条数据进行读写操作。

在互联网时代,一个系统常常有很多人在使用,因此就可能出现高并发的现象,也就是不同的用户同时对一条数据进行操作,如果没有有效的处理,自然就会出现数据的异常。而最常见的一种数据并发的场景就是电商中的秒杀,成千上万个用户对在极端的时间内,抢购一个商品。针对这种场景,商品的库存就是一个需要控制的数据,而多个用户对在同一时间对库存进行重写,一个不小心就可能出现超卖的情况。

针对这种情况,我们如何有效的处理数据并发呢?

第一种方案、数据库锁
从锁的基本属性来说,可以分为两种:一种是共享锁(S),一种是排它锁(X)。在MySQL的数据库中,是有四种隔离级别的,会在读写的时候,自动的使用这两种锁,防止数据出现混乱。

这四种隔离级别分别是:

读未提交(Read Uncommitted)
读提交(Read Committed)
可重复读(Repeated Read)
串行化(Serializable)
当然,不同的隔离级别,效率也是不同的,对于数据的一致性保证也就有不同的结果。而这些可能出现的又有哪些呢?

脏读(dirty read)

当事务与事务之间没有任何隔离的时候,就可能会出现脏读。例如:商家想看看所有的订单有哪些,这时,用户A提交了一个订单,但事务还没提交,商家却看到了这个订单。而这时就会出现一种问题,当商家去操作这个订单时,可能用户A的订单由于部分问题,导致数据回滚,事务没有提交,这时商家的操作就会失去目标。

不可重复读(unrepeatable read)

一个事务中,两次读操作出来的同一条数据值不同,就是不可重复读。

例如:我们有一个事务A,需要去查询一下商品库存,然后做扣减,这时,事务B操作了这个商品,扣减了一部分库存,当事务A再次去查询商品库存的时候,发现这一次的结果和上次不同了,这就是不可重复读。

幻读(phantom problem)

一个事务中,两次读操作出来的结果集不同,就是幻读。

例如:一个事务A,去查询现在已经支付的订单有哪些,得到了一个结果集。这时,事务B新提交了一个订单,当事务A再次去查询时,就会出现,两次得到的结果集不同的情况,也就是幻读了。

那针对这些结果,不同的隔离级别可以干什么呢?

“读未提(Read Uncommitted)”能预防啥?啥都预防不了。

“读提交(Read Committed)”能预防啥?使用“快照读(Snapshot Read)”方式,避免“脏读”,但是可能出现“不可重复读”和“幻读”。

“可重复读(Repeated Red)”能预防啥?使用“快照读(Snapshot Read)”方式,锁住被读取记录,避免出现“脏读”、“不可重复读”,但是可能出现“幻读”。

“串行化(Serializable)”能预防啥?有效避免“脏读”、“不可重复读”、“幻读”,不过运行效率奇差。

好了,锁说完了,但是,我们的数据库锁,并不能有效的解决并发的问题,只是尽可能保证数据的一致性,当并发量特别大时,数据库还是容易扛不住。那解决数据并发的另一个手段就是,尽可能的提高处理的速度。

因为数据的IO要提升难度比较大,那么通过其他的方式,对数据进行处理,减少数据库的IO,就是提高并发能力的有效手段了。

最有效的一种方式就是:缓存
想要减少并发出现的概率,那么读写的效率越高,读写的执行时间越短,自然数据并发的可能性就变小了,并发性能也有提高了。

还是用刚才的秒杀举例,我们为的就是保证库存的数据不出错,卖出一个商品,减一个库存,那么,我们就可以将库存放在内存中进行处理。这样,就能够保证库存有序的及时扣减,并且不出现问题。这样,我们的数据库的写操作也变少了,执行效率也就大大提高了。

当然,常用的分布式缓存方式有:Redis和Memcache,Redis可以持久化到硬盘,而Memcache不行,应该怎么选择,就看具体的使用场景了。

当然,缓存毕竟使用的范围有限,很多的数据我们还是必须持久化到硬盘中,那我们就需要提高数据库的IO能力,这样避免一个线程执行时间太长,造成线程的阻塞。

那么,读写分离就是另一种有效的方式了
当我们的写成为了瓶颈的时候,读写分离就是一种可以选择的方式了。

我们的读库就只需要执行读,写库就只需要执行写,把读的压力从主库中分离出去,让主库的资源只是用来保证写的效率,从而提高写操作的性能。

❺ 如何处理高并发

处理高并发的六种方法

1:系统拆分,将一个系统拆分为多个子系统,用bbo来搞。然后每个系统连一个数据库,这样本来就一个库,现在多个数据库,这样就可以抗高并发。

2:缓存,必须得用缓存。大部分的高并发场景,都是读多写少,那你完全可以在数据库和缓存里都写一份,然后读的时候大量走缓存不就得了。毕竟人家redis轻轻松松单机几万的并发啊。没问题的。所以你可以考的虑考虑你的项目里,那些承载主要请求读场景,怎么用缓存来抗高并发。

3:MQ(消息队列),必须得用MQ。可能你还是会出现高并发写的场景,比如说一个业务操作里要频繁搞数据库几十次,增删改增删改,疯了。那高并发绝对搞挂你的系统,人家是缓存你要是用redis来承载写那肯定不行,数据随时就被LRU(淘汰掉最不经常使用的)了,数据格式还无比简单,没有事务支持。所以该用mysql还得用mysql啊。那你咋办?用MQ吧,大量的写请求灌入MQ里,排队慢慢玩儿,后边系统消费后慢慢写,控制在mysql承载范围之内。所以你得考虑考虑你的项目里,那些承载复杂写业务逻辑的场景里,如何用MQ来异步写,提升并发性。MQ单机抗几万并发也是ok的。

4:分库分表,可能到了最后数据库层面还是免不了抗高并发的要求,好吧,那么就将一个数据库拆分为多个库,多个库来抗更高的并发;然后将一个表拆分为多个表,每个表的数据量保持少一点,提高sql跑的性能。

5:读写分离,这个就是说大部分时候数据库可能也是读多写少,没必要所有请求都集中在一个库上吧,可以搞个主从架构,主库写入,从库读取,搞一个读写分离。读流量太多的时候,还可以加更多的从库。

6:solrCloud:
SolrCloud(solr 云)是Solr提供的分布式搜索方案,可以解决海量数据的 分布式全文检索,因为搭建了集群,因此具备高可用的特性,同时对数据进行主从备份,避免了单点故障问题。可以做到数据的快速恢复。并且可以动态的添加新的节点,再对数据进行平衡,可以做到负载均衡:

❻ java 如何并发更新数据库同一条数据

分2分情况:

一.普通的单应用并发,使用关键字synchronized就可以实现。

二.多应用或多台并发,这时在由于2者并非同一应用,使用synchronized并不能满足要求。此时,有下面几种方案:

  1. 数据库行级锁,优点是简单粗暴,缺点是容易死锁,非数据库专业人事建议不使用。

  2. 写入请求分离成一个独立项目,这就回到了第一种情况,优点是实现技术难度低,缺点是高并发性能相对不是很高。

  3. 使用分布式事务管理,这个是目前高并发处理的最优方案了。


最后要说的没有差的方案,每个方案都有其适用环境,请根据自身需求选择对应方案。

❼ 双十一是怎么保证高并发,分布式系统中,数据一致性

前言 在系统开发过程中,经常遇到数据重复插入、重复更新、消息重发发送等等问题,因为应用系统的复杂逻辑以及网络交互存在的不确定性,会导致这一重复现象,但是有些逻辑是需要有幂等特性的,否则造成的后果会比较严重,例如订单重复创建,这时候带来的问题可是非同一般啊。 什么是系统的幂等性 幂等是数据中得一个概念,表示N次变换和1次变换的结果相同。 高并发的系统如何保证幂等性? 1.查询 查询的API,可以说是天然的幂等性,因为你查询一次和查询两次,对于系统来讲,没有任何数据的变更,所以,查询一次和查询多次一样的。 2.MVCC方案 多版本并发控制,update with condition,更新带条件,这也是在系统设计的时候,合理的选择乐观锁,通过version或者其他条件,来做乐观锁,这样保证更新及时在并发的情况下,也不会有太大的问题。 例如:update table_xxx set name=#name#,version=version+1 where version=#version# ,或者是 update table_xxx set quality=quality-#subQuality# where quality-#subQuality# >= 0 。 3.单独的去重表 如果涉及到的去重的地方特别多,例如ERP系统中有各种各样的业务单据,每一种业务单据都需要去重,这时候,可以单独搞一张去重表,在插入数据的时候,插入去重表,利用数据库的唯一索引特性,保证唯一的逻辑。 4.分布式锁 还是拿插入数据的例子,如果是分布是系统,构建唯一索引比较困难,例如唯一性的字段没法确定,这时候可以引入分布式锁,通过第三方的系统,在业务系统插入数据或者更新数据,获取分布式锁,然后做操作,之后释放锁,这样其实是把多线程并发的锁的思路,引入多多个系统,也就是分布式系统中得解决思路。 5.删除数据 删除数据,仅仅第一次删除是真正的操作数据,第二次甚至第三次删除,直接返回成功,这样保证了幂等。 6.插入数据的唯一索引 插入数据的唯一性,可以通过业务主键来进行约束,例如一个特定的业务场景,三个字段肯定确定唯一性,那么,可以在数据库表添加唯一索引来进行标示。 这里有一个场景,API层面的幂等,例如提交数据,如何控制重复提交,这里可以在提交数据的form表单或者客户端软件,增加一个唯一标示,然后服务端,根据这个UUID来进行去重,这样就能比较好的做到API层面的唯一标识。 7.状态机幂等 在设计单据相关的业务,或者是任务相关的业务,肯定会涉及到状态机,就是业务单据上面有个状态,状态在不同的情况下会发生变更,一般情况下存在有限状态机,这时候,如果状态机已经处于下一个状态,这时候来了一个上一个状态的变更,理论上是不能够变更的,这样的话,保证了有限状态机的幂等。 以上就是高并发系统数据幂等的解决方案的资料整理,后续继续补充相关知识,谢谢大家对本站的支持!

阅读全文

与如何分布式并发修改数据库相关的资料

热点内容
精选速购怎么做代理 浏览:532
嘉定区市场包装材料哪个好 浏览:429
村合作社的产品怎么外销 浏览:866
在交易猫上架商品要多久审核完 浏览:673
微博一周数据怎么看 浏览:104
床上用品批发市场哪里 浏览:810
影响产品销售成本的因素有哪些 浏览:34
曼龙怎么做代理 浏览:539
大学驾校如何找代理 浏览:61
怎么销售开拓槟榔市场 浏览:870
信息辅助家园共育活动有什么 浏览:446
广州服装批发市场白马什么定位 浏览:622
产品定制需要什么标志 浏览:76
信息隐藏在现实生活中应用于哪些方面 浏览:804
参与网络信息犯罪要多久才判 浏览:464
要想扎针技术好应该怎么做 浏览:598
二手房买卖交易流程是什么 浏览:941
充红包银行拒绝交易怎么回事 浏览:197
抖音数据清空了怎么恢复 浏览:472
技术学院指哪些 浏览:518