A. 数据分析需要掌握哪些知识
数据分析需要掌握中学数学、概率论与数理统计、线性代数、计算机基础理论,以及掌握任意一门编程语言。
B. 数据分析要学习哪些
学什么?
数据分析要学的内容大致分为6个板块,分别是:
Excel
精通Excel分析工具,掌握Excel经典函数,准确快速地完成数据清洗,利用Excel数据透视及可视化,可以透过现象看本质。
MySQL
理解MySQL数据库相关概念及存储原理,掌握SQL基本的增、删、改、查等语法掌握数据库性能调优策略,熟练使用SQL进行数据清洗与数据规范化。
BI商业智能工具
了解商业智能的核心价值,精通FineReport、FineBI,快速挖掘数据价值,掌握行业场景应用。
Python
学习Python基本编程语言知识,了解Python程序的计算机运行原理,能够使用Python编程处理工作中的重复性工作。 掌握网络数据抓取技术,Python数据库应用开发,实现Python数据可视化操作,提高数据收集和数据分析能力。 掌握Python数据分析处理基础库,具有应用Python语言解决数据分析中实际问题能力。
数据分析思维与理论
掌握微积分、线性代数、概率论、参数估计、假设检验、方差分析等数理统计基础 掌握基本的数学、统计学知识,学习数据运营方法论、机器学习夯实基础,提升数据敏感性,建立数据思维和数据素养。
掌握如何撰写行业分析报告和数据分析项目流程,能够独立完成数据分析项目。 掌握常见的数据运营方法如AARRR、漏斗、ABTset、描述性统计分析、相关分析、指数系统搭建等,培养利用多种数据分析方法解决实际工作问题能力。
机器学习
掌握机器学习常用经典算法原理及sklearn代码的实现、机器学习算法的选取、调优及模型训练、神经网络的特点及原理,增加个人核心竞争力,拥有能够用相关数据挖掘算法为解决实际问题能力;奠定人工智能算法入门基础。
如何学?
至少花三个月掌握技术
“磨刀不误砍柴工”,要想从为“工人”,甚至熟悉工,也需要很多技能,因为怎么说数据分析师也是技术工种。我觉得至少你要花3个月时间来学习一些最基础的知识。
花1个月学习数据库知识及基础的统计学知识。
花1~2个月学习最基础的数据分析软件操作。
花1个月时间进行时间项目操作及业务练习
数据分析入门容易提高难,题主目前处于初级阶段,可以通过自学观看视频,或者系统培训来提高自己,已工作来说,接受系统培训会更加快速,更推荐跟着课程系统性的学习,搭建好逻辑框架。
C. 数据分析需要学习哪些
1、数学知识
数学知识是数据分析师的基础知识。对于初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力即可,了解常用统计模型算法则是加分。
对于高级数据分析师,统计模型相关知识是必备能力,线性代数(主要是矩阵计算相关知识)最好也有一定的了解。
而对于数据挖掘工程师,除了统计学以外,各类算法也需要熟练使用,对数学的要求是最高的。
所以数据分析并非一定要数学能力非常好才能学习,只要看你想往哪个方向发展,数据分析也有偏“文”的一面,特别是女孩子,可以往文档写作这一方向发展。
2、分析工具
对于初级数据分析师,玩转Excel是必须的,数据透视表和公式使用必须熟练,VBA是加分。另外,还要学会一个统计分析工具,SPSS作为入门是比较好的。
对于高级数据分析师,使用分析工具是核心能力,VBA基本必备,SPSS/SAS/R至少要熟练使用其中之一,其他分析工具(如Matlab)视情况而定。
对于数据挖掘工程师……嗯,会用用Excel就行了,主要工作要靠写代码来解决呢。
3、编程语言
对于初级数据分析师,会写SQL查询,有需要的话写写Hadoop和Hive查询,基本就OK了。
对于高级数据分析师,除了SQL以外,学习Python是很有必要的,用来获取和处理数据都是事半功倍。当然其他编程语言也是可以的。
对于数据挖掘工程师,Hadoop得熟悉,Python/Java/C++至少得熟悉一门,Shell得会用……总之编程语言绝对是数据挖掘工程师的最核心能力了。
4、业务理解
业务理解说是数据分析师所有工作的基础也不为过,数据的获取方案、指标的选取、乃至最终结论的洞察,都依赖于数据分析师对业务本身的理解。
对于初级数据分析师,主要工作是提取数据和做一些简单图表,以及少量的洞察结论,拥有对业务的基本了解就可以。
对于高级数据分析师,需要对业务有较为深入的了解,能够基于数据,提炼出有效观点,对实际业务能有所帮助。
对于数据挖掘工程师,对业务有基本了解就可以,重点还是需要放在发挥自己的技术能力上。
业务能力是优秀数据分析师必备的,如果你之前对某一行业已经非常熟悉,再学习数据分析,是非常正确的做法。刚毕业没有行业经验也可以慢慢培养,无需担心。
5、逻辑思维
这项能力在我之前的文章中提的比较少,这次单独拿出来说一下。
对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。
对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。
对于数据挖掘工程师,逻辑思维除了体现在和业务相关的分析工作上,还包括算法逻辑,程序逻辑等,所以对逻辑思维的要求也是最高的。
6、数据可视化
数据可视化说起来很高大上,其实包括的范围很广,做个PPT里边放上数据图表也可以算是数据可视化,所以我认为这是一项普遍需要的能力。
对于初级数据分析师,能用Excel和PPT做出基本的图表和报告,能清楚的展示数据,就达到目标了。
对于高级数据分析师,需要探寻更好的数据可视化方法,使用更有效的数据可视化工具,根据实际需求做出或简单或复杂,但适合受众观看的数据可视化内容。
对于数据挖掘工程师,了解一些数据可视化工具是有必要的,也要根据需求做一些复杂的可视化图表,但通常不需要考虑太多美化的问题。
7、协调沟通
对于初级数据分析师,了解业务、寻找数据、讲解报告,都需要和不同部门的人打交道,因此沟通能力很重要。
对于高级数据分析师,需要开始独立带项目,或者和产品做一些合作,因此除了沟通能力以外,还需要一些项目协调能力。
对于数据挖掘工程师,和人沟通技术方面内容偏多,业务方面相对少一些,对沟通协调的要求也相对低一些。
D. 大数据分析师 应该要学什么知识
大数据分析师应该要学的知识有,统计概率理论基础,软件操作结合分析模型进行实际运用,数据挖掘或者数据分析方向性选择,数据分析业务应用。
1、统计概率理论基础
这是重中之重,千里之台,起于垒土,最重要的就是最下面的那几层。统计思维,统计方法,这里首先是市场调研数据的获取与整理,然后是最简单的描述性分析,其次是常用的推断性分析,方差分析,到高级的相关,回归等多元统计分析,掌握了这些原理,才能进行下一步。
2、软件操作结合分析模型进行实际运用
关于数据分析主流软件有(从上手度从易到难):Excel,SPSS,Stata,R,SAS等。首先是学会怎样操作这些软件,然后是利用软件从数据的清洗开始一步步进行处理,分析,最后输出结果,检验及解读数据。
3、数据挖掘或者数据分析方向性选择
其实数据分析也包含数据挖掘,但在工作中做到后面会细分到分析方向和挖掘方向,两者已有区别,关于数据挖掘也涉及到许多模型算法,如:关联法则、神经网络、决策树、遗传算法、可视技术等。
4、数据分析业务应用
这一步也是最难学习的一步,行业有别,业务不同,业务的不同所运用的分析方法亦有区分,实际工作是解决业务问题,因此对业务的洞察能力非常重要。
(4)数据分析适合学哪些理论扩展阅读
分析工作内容
1、搜索引擎分析师(Search Engine Optimization Strategy Analyst,简称SEO分析师)是一项新兴信息技术职业,主要关注搜索引擎动态,修建网站,拓展网络营销渠道,网站内部优化,流量数据分析,策划外链执行方案,负责竞价推广。
2、SEO分析师需要精通商业搜索引擎相关知识与市场运作。通过编程,HTML,CSS,JavaScript,MicrosoftASP.NET,Perl,PHP,Python等建立网站进行各种以用户体验为主同时带给公司盈利但可能失败的项目尝试。
E. 数据分析需要学些什么
1.统计基础
理工科的学生在本科阶段学习过概率论与数理统计,单从做数据分析的角度已经够用。其他方面,可以根据需要查看相关书籍,随时进行查漏补缺即可。个人推荐《深入浅出统计学》,可以让统计理论的学习有趣又自然。州穗
2.数据库知识
关系型数据库很重要。在学习数据分析的初期甚至很长一段时间,你接触到的数据都存储在关系孝迹型型数据库中,需要学习SQL语巧猜言进行数据查询。关于SQL语言,强力推荐《SQL必知必会》,整本书通俗易懂,是学习SQL语言的不二之选。
3.编程能力
F. 数据分析的几种经典的理论
数据分析理论导航页收录已经发布的工作生活用到的数据分析思路及理论方法。例如数据分析师基本技能、时间序列分析、分析软件功能介绍等。
1 大数据时代:数据分析能力重要性
2 大数据时代:数据分析基础
3 正态性检验方法介绍
4 数据分析技术:数据差异的显着性检验
5 数据分析方法:非正态数据转化成正态数据
6 均值差异性检验:Z检验和T检验综述
7 均值差异性检验:方差分析综述
8 数据分析方法:非参数检验
9 数据分析技术:拟合优度检验
10 数据分析技术:数据关联性分析综述
11 数据分析技术:数据的归纳分析
12 数据分析技术:问卷(考卷)的信度与效度
13 数据分析技术:相关关系分析
14 数据分析技术:数据分类很重要
15 数据分析技术:回归分析
16 数据分析技术:非参数检验
G. 数据分析需要掌握些什么知识
我们先从整体上了解数据分析师要掌握的技能有哪些,然后再从具体职位类别来看,不同的职位具体要掌握的技能有哪些。
这样你就能根据自己的实际情况,有针对性的准备和学习。
一、数据分析的胜任力模型是什么?
从整体上来看,数据分析师需要掌握的能力有很多,从总体上可以分为以下几类,这些能力构成了数据分析师的能力模型。
1)理论基础,包括统计学
2)数据分析工具,常用的分析工具有 Excel,SQL,Python 等
3)可视化工具,常用的有 Excel,商业智能(Business Intelligence,BI)
4)业务知识,包括常用的指标、某行业的业务流程
5)数据分析思维,包括常用的分析方法
6)通用能力,包括 PPT、沟通能力
下面我们来详细看下每一种能力的要求。
理论基础:统计学
数据分析背后的理论基础是统计学。所以,掌握了统计学以后我们才能去看懂数据表达的意义是什么。举个例子,给你一家公司员工的工资,是平均值能代表这家公司的工资水平,还是中位数能代表?
如果没学过统计学,那么可能只认识这里的平均值,而不知道中位数这个知识。但是,如果你学过了统计学就会知道,中位数比平均值更能反映出数据的集中表现。
统计学的内容比较多,详细又可以分为两类内容:描述统计分析、推论统计分析。
什么是描述统计分析?
对大量信息进行归纳是处理数据时最基本的任务。中国约有 14 亿人,一张记录每位中国人的姓名和收入的电子表格包含了我们衡量这个国家经济健康状况所需的所有信息,通常我们也将多个数据集合在一起的东东叫“简称数据集”。但这张信息过量的表格其实相当于什么都没有告诉我们。这就是让人觉得讽刺的地方:经常是数据越多,事实越模糊。
因此,我们需要简化,将一系列复杂的数据减少为几个能够起到描述作用的数字,正如奥运会体操比赛中,我们将一套多难度组合的复杂动作浓缩为一个得分:9.8 分。
描述统计分析就是将一系列复杂的数据减少为几个能够起到描述作用的数字,用这些有代表性的数字来代表所有的数据。这样在面对一大堆数据时,你可在不知道所有数据的情况下就能知道数据的整体情况。
这就好比,我们通常一说起美女,能想到的是这样几个指标:长腿,大眼睛,脸蛋好看。虽然全国有那么多美女,你也没有见过全部的美女,但是你却能通过这样几个代表美女的指标就可以大概知道什么是美女。
同样的,描述统计学的关键点在于,找到几个关键的数字来描述数据的整体情况。那么,问题就来了,能担当起这样重要责任的数字有哪些呢?描述数据的整体情况,我们可以用 4 个指标来做,分别是:平均值、四分位数、标准差和标准分。例如,前面我们在拿到工资数据,就可以用“中位数”这样的数字来描述工资的整体情况。
所以,描述统计分析就是掌握 4 个指标:平均值,四分位数,标准差和标准分。
什么是推论统计分析?
推论统计分析就是通过样本来推断出总体。需要掌握的知识包括概率分布、中心极限定、如何用样本估计总体、置信区间、假设检验。例如,互联网常用的 AB 测试背后的原理就是假设检验,如果不掌握推论统计分析,那么连 AB 测试的结果也看不懂,更不用说完成一个 AB 测试实验。
2.数据分析工具
很多人看到现在 Python 很火,就不管自己的能力水平如何,就一头扎进学习 Python 的大潮,最后发现其实自己学不会,或者学完用不上。
这其实是不对的,真正工作里最常用的数据分析工具其实是 Excel,SQL。所以,如果你的零基础,不建议一上来就学 Python,而是先学会 Excel 分析数据,然后学会 SQL。
这样你学会了常用的分析工具,然后再学 Python 才是加分项。同时,这样学习的顺序还有一个好处,如果你是零基础没学过编程,一上来学 Python,大概率是学不会的。但是如果你学过用 Excel、SQL 处理数据,那么就具备了一定的基础,再学 Python,很多概念就会理解起来比较容易。
这就好比,一个婴儿不是一上来就学习跑步(Python),而是先把走路学会,具备了走路(Excel、SQL)的基础,再跑步就容易多了。
需要注意的是,除非是工作必须要求的,其他少部分公司用的工具其实不需要学习。比如有些公司要求其他编程语言,例如 R、SPSS、SAS 这些工具。
现在 Pyhon 已经是人工智能排名第一的编程语言了,大部分公司要求 Python,很少部分的公司要求其他的编程语言,所以学习市场要求最多的那个技能才能找到更多机会。如果你学习了少部分公司才要求的工具,那么意味着你找工作或者跳槽只能选择这些公司,而会错失其他大部分公司的求职机会,对你整个职业生涯不利。
TIOBE 编程语言排行榜是全球编程语言流行趋势的一个指标,每月更新,官网地址(https://www.tiobe.com/tiobe-index)。下图是 2021 年 2 月份排名前 10 的编程语言的变化图,其中橙色曲线是 Python,我们会发现 Python 的流行趋势越来越高。
3.可视化工具
常用的可视化工具包括 Excel、商业智能(BI)。
一般的可视化图表用 Excel 里的图表功能就可以实现,而且使用起来也方便。如果是要经常做报表,并且要求实现报表自动化,那么就需要用到商业智能(BI)工具。
那什么是商业智能(BI)呢?
微软官方给的定义是“使用用于自助服务和企业商业智能 (BI) 的统一、可扩展平台(该平台易于使用,可帮助获取更深入的数据见解),连接到任何数据并对数据进行可视化。 ”
毫无悬念,看这种官方定义就是看不懂。简单来说就是把数据导入商业智能(BI)工具中,就可以快速对数据可视化。例如下图就是把数据导入用商业智能(BI)工具中,通过可视化数据来分析。
IDC《2019 年下半年中国商业智能软件市场数据跟踪报告》显示,在中国商业智能软件子市场中,报表分析仍是目前市场最主要的需求,2019 年全年年市场份额占比为 79.0%。高级分析和预测分析市场份额占比 21.0%(下图)。
常用的商业智能(BI)工具有哪些呢?
目前使用最多的商业智能(BI)工具是 Power BI、Tableau、帆软,选择其中任意一种学习就可以了。
4.业务知识
因为数据分析是用来解决具体行业问题的,需要从业务的角度出发,了解各个指标,以及每个指标之间的关系,还需要联系业务去理解数据。所以,工作中数据分析脱离不了业务,在分析中要找到导致问题发生的根本原因,而不只是单纯的统计数据。
因此需要具备某个行业的业务知识才能去理解这个行业里的术语、业务问题等。
业务知识包括某个行业的常用指标、业务流程。需要注意的是,不同行业的指标、业务流程是不一样的,所以需要学习的时候针对你的目标行业去学习准备。例如,下图分别是金融信贷行业、在线教育行业的业务流程。
金融信贷行业业务流程(来自书《数据分析思维》)
在线教育业务流程(来自书《数据分析思维》)
如果是刚入门,这块内容做到了解即可,等进入工作以后,再慢慢深入业务,积累业务经验。具体某个行业的常用指标、业务流程可以看书《数据分析思维》,这本书里涉及了 10 多个行业的指标、业务流程。
5.数据分析思维
在数据分析相关的职位里经常会写这么一条招聘要求“具备数据分析思维”。在工作或者面试中,会经常听到分析思维、分析思路、分析方法。这三个词语有什么关系呢?其实简单来说,它们都是指分析方法。
数据分析思维需要你掌握 10 种常用的分析方法。
数据分析 10 种常用的分析方法
如果你的分析目的是想将复杂问题变得简单,就可以使用逻辑树分析方法,例如经典的费米问题就可以用这个分析方法。
如果你的分析目的是做行业分析,那么就可以用 PEST 分析方法,例如你想要研究中国少儿编程行业。
如果你想从多个角度去思考问题,那么就可以用多维度拆解分析方法,例如找相亲对象,需要从多个角度去分析是否合适。
如果你想进行对比分析,就要用到对比分析方法,例如你朋友问自己胖吗,就是在对比。
如果你想找到问题发生的原因,那么就要用到假设检验分析方法,其实破案剧里警察就是用这个方法来破案的。
如果你想知道 A 和 B 有什么关系,就要用到相关分析方法,例如豆瓣在我们喜欢的电影下面推荐和这部分电影相关的电影。
如果你想对用户留存和流失分析,就要用到群组分析方法,例如微博用户留存分析。
如果你想对用户按价值分类,那么就要用到 RFM 分析方法,例如信用卡的会员服务,就是对用户按价值分类,对不同用户使用不同的营销策略,从而做到精细化运营。
如果你想分析用户的行为或者做产品运营,就要用到 AARRR 模型分析方法,例如对拼多多的用户进行分析。
如果你想分析用户的转化,就要用到漏斗分析方法,例如店铺本周销量下降,想知道是中间哪个业务环节出了问题。
6.通用能力
通用能力包括 PPT 制作分析报告、沟通能力。
在工作中,要经常做分析结果做成数据分析报告,然后展示给业务部门、上级领导、客户等,而这种展示数据分析报告的场景常用的工具就是 PPT,所以就要求你会用 PPT 制作数据分析报告,有较好的的文字、书面总结能力。
职业社交网站领英发布的《2018 新兴工作岗位报告》报告里说,最大的技能缺口是软技能,比如口头交流、领导力和时间管理等。这份报告中建议,职场人士需要在快速变化的工作环境中,学习并保持软技能,因为拥有这些技能的人才具备更大的职场优势。
其实,任何职位都需要沟通能力,但是,数据分析师对沟通能力的要求更高。因为,数据分析师解决的是实际的问题,需要跨部门沟通业务,做好的数据分析报告也要展示给各个部门、领导、客户,只有好的沟通能力,才能让你的分析结果得到用户的认可。 那么这些通用能力如何提升呢?最直接的方式,就是通过写文章来提升。
通过写作可以同时提升你下面 3 个能力:
1)逻辑能力
写作的本质其实是把一件事情讲清楚,而逻辑能力强的人写出来的内容,读起来更顺畅。
2)文字表达能力
数据分析师要经常做数据分析报告,和通过邮件汇报分析结果。这体现的其实就是文字表达能力,提高这个能力的办法就是不断去写作。
3)沟通能力
写作其实就是把想说的话通过文字和你的用户去沟通。另外,经常在社群里提问和解答他人的问题,也可以提高你的沟通能力。你会看到不同人提问的水平是不一样的,有的人可以完整的把一个问题描述清楚,有的人说完,其他人也不明白他的问题是什么。这其实就是体现了沟通能力。
二、不同职位的数据分析能力要求有什么不一样?
经过前面的分析,我们从整体上知道了数据分析师需要掌握的能力。但并不是说,这些能力全都掌握了你才能找到一份数据分析师的工作。因为不同的职位的要求不一样的。在《职业发展前景:数据分析师的晋升通道》章节我们知道了数据分析相关职位的分类。
我把胜任力模型中的这些能力对应到不同的职位,就可以清楚的看到对应职位的能力要求(下图)。
有一个误区,很多人以为只要掌握了分析工具,就掌握了数据分析,其实不是的。从图中,我们可以看出。各个数据分析职位都需要的能力是:业务知识、分析思维、PPT、沟通能力。这些能力才可以让你从一个只会舞弄工具的普通职场人变成真正解决业务问题的职场高手。
很多人以为数据分析师需要掌握很高大的工具,其实不是的。例如腾讯里有一个岗位叫“商业数据分析师”,这听起来很高大上。其实这个职位对应的就是上图初级数据分析师的能力要求,也就是理论基础(描述统计分析),分析工具(Excel),可视化工具(Excel)。
上图中黄色标出的是相对于前一职位多出来的能力。中级数据分析师在初级数据分析师要求的能力上增加了分析工具(SQL),可视化工具(商业智能 BI)。高级数据分析师在中级数据分析师要求的能力上增加了理论基础(推论统计分析),分析工具(Python)。
Excel、SQL、Python 要掌握到什么程度?
我们知道了数据分析师最常用的分析工具是 Excel、SQL、Python。那么问题就来了,这些分析工具具体掌握哪些内容呢?
H. 数据分析需要掌握些什么知识
数据分析师需要的技能大致有这些:Excel、SQL、统计学及SPSS、Python/R等。
建议从Excel开始,因为Excel是使用最多,也是最强大的数据分析工具,入门简单,因为大部分人都接触过Excel。
Excel
Excel分为四块:公式+技巧+数据透视表+图表。
先从Excel公式开始,通过公式感受Excel的强大与神奇。Excel常用公式分为5类,如下图所示。
I. 数据分析需要掌握哪些知识
需要学习的基础技能需求如下:
(1) SQL数据库的基本操作,会基本的数据管理;
(2)会用Excel/SQL做基本的数据分析和展示(3)会用脚本语言进行数据分析,Python or R;
(4)有获取外部数据的能力,如爬虫;
(5)会基本的数据可视化技能,能撰写数据报告;
(6)熟悉常用的数据挖塌慎掘算法:回归分析、决策树、随机森林、支持向量机等;
需要学习的理论基础如下:
1、学习数据分析基础知识,包括概率论、数理统计。基础这种东西还是要掌握好的啊,冲毕基础都还没扎实,知识大厦是很容易倒的哈。
2、你的目标行业的相关理论知识。比如金融类的,要学习证券、银行、财务等各种知识,不然到了公司就一脸懵逼啦。
3、学习数据分析工具,软件结合案列的团判敬实际应用,关于数据分析主流软件有(从上手度从易到难):Excel, SPSS, stata, R, Python, SAS等。
4、学会怎样操作这些软件,然后是利用软件从数据的清洗开始一步步进行处理, 分析,最后输出结果,检验及解读数据。
J. 数据分析需要掌握些什么知识
1)具有业务敏感度,反应迅速,能够良好沟通;
2)具有数据分析和数据仓库建模的项目实践经验;
3)3年及以上数据分析经验,有互联网产品、运营分析经验;
4)熟悉R、SAS、SPSS等统计分析软件,熟练运用Python,熟练使用 SQL、Hive等;
5)本科或以上学历,数学、统计、计算机、运筹学等相关专业;
那么对于正在入门阶段的同学们应该如何正确把握自己的学习方向呢?
从学科知识来看,数据分析涉及到一下的知识要点:
(1)统计学:参数检验、非参检验、回归分析等
(2)数学:线性代数、微积分等
(3)社会学:主要是一些社会学量化统计的知识,如问卷调查与统计分析;还有就是一些社会学的知识,这些对于从事营销类的数据分析人员比较有帮助
(4)经济金融:如果是从事这个行业的数据分析人员,经济金融知识是必须的,这里就不多说了
1)数据分析报告类:Microsoft Office软件等,如果连excel表格基本的处理操作都不会,连PPT报告都不会做,那我只好说离数据分析的岗位还差的很远。现在的数据呈现不再单单只是表格的形式,而是更多需要以可视化图表去展示你的数据结果,因为数据可视化软件就不能少,BDP个人版、TABLUEA、Echart等这些必备的
(2)专业数据分析软件:常见的有诸如SPSS、SAS、Matlab等等,这些软件可以很好地帮助我们完成专业性的算法或模型分析,还有高级的Python、R等。
(3)数据库:hive、hadoop、impala等数据库相关的知识可以学习;
(3)辅助工具:比如思维导图软件(如MindManager、MindNode Pro等)也可以很好地帮助我们整理分析思路。