导航:首页 > 数据处理 > 数据分析要学什么知识

数据分析要学什么知识

发布时间:2022-03-08 19:57:23

数据分析要掌握哪些知识

总结来看,数据分析的目的是整个研究方案的起点,决定着后续研究的内容,数据的来源,使用的方法,其目的无非就是两个:

数据分析的步骤


1、明确分析的目的,提出问题。只有弄清楚了分析的目的是什么,才能准确定位分析因子,提出有价值的问题,提供清晰的指引方向。

2、数据采集。收集原始数据,数据来源可能是丰富多样的,一般有数据库、互联网、市场调查等。具体办法可以通过加入“埋点”代码,或者使用第三方的数据统计工具。

3、数据处理。对收集到的原始数据进行数据加工,主要包括数据清洗、数据分组、数据检索、数据抽取等处理方法。

4、数据探索。通过探索式分析检验假设值的形成方式,在数据之中发现新的特征,对整个数据集有个全面认识,以便后续选择何种分析策略。

5、分析数据。数据整理完毕,就要对数据进行综合分析和相关分析,需要对产品、业务、技术等了如指掌才行,常常用到分类、聚合等数据挖掘算法。Excel是最简单的数据分析工具,专业数据分析工具有FineBI、Python等。

6、得到可视化结果。借助可视化数据,能有效直观地表述想要呈现的信息、观点和建议,比如金字塔图、矩阵图、漏斗图、帕累托图等,同时也可以使用报告等形式与他人交流。

怎么做数据分析

简单来说,数据分析的本质还是分析,就是一个发现问题-分析问题-解决问题的过程。

首先要说的是,数据分析不光是一个技术门类,同时它也是一个庞杂无比的理论门类,里面包含了大数据、机器学习、统计学等等诸多领域的知识,很多刚接触数据分析的人都不知道该从何学起,其实无外乎三个字——道、法、器。

⑵ 数据分析需要掌握些什么知识

统计学,数学,逻辑学是数据分析的基础,是数据分析师的内功,内功不扎实,学再多都是徒劳。

掌握统计学,我们才能知道每一种数据分析的模型,什么样的输入,什么样的输出,有什么样的作用,开始我们并不一定要把每个算法都弄懂。

如果我们要做数据挖掘师,数据能力是我们吃饭的饭碗。

如果你没有数学能力,用现成的模型也好,模块也好,也能做,但一定会影响你的技术提升,当然更影响你的职位晋升。

业务方向

大家在招聘网站中搜索数据分析的职位,大概分为两类:辅助业务的数据分析职位和数据分析师职位。

1)辅助业务的数据分析:一般在零售业里职位设置较多,该职位一定要对业务烂熟于心,对业务有长时间的积淀和理解,用数据发现业务流程中的问题,并提出合理化的解决方案,分析数据是为整个商业逻辑去做支撑。细分职位包括:市场调查、行业分析和经营分析三类。

2)数据分析师:业务方向的数据分析师,该职位招聘时一定前面有一个限定词,什么数据分析师,归结起来分为三类:产品数据分析师,运营数据分析师和销售数据分析师。

技术方向

技术方向主要指数据挖掘方向,分为三类:数据挖掘工程师(机器学习)、数据仓库工程师(构架师)和数据开发工程师。在互联网和金融行业岗位设置较多

普遍来说:技术方向的基础岗的工资薪酬要比业务岗的薪酬高一个等级,但是做到管理岗的话,在中国,业务岗的薪酬比技术岗的薪酬要高。

⑶ 数据分析需要掌握哪些知识呢

数据分析所需要掌握的知识:

⑷ 数据分析都要学习哪些内容

1、数学知识


数学知识是数据分析师的基础知识。对于初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力即可,了解常用统计模型算法则是加分。


2、分析工具


对于初级数据分析师,玩转Excel是必须的,数据透视表和公式使用必须熟练,VBA是加分。另外,还要学会一个统计分析工具,SPSS作为入门是比较好的。


3、编程语言


对于初级数据分析师,会写SQL查询,有需要的话写写Hadoop和Hive查询,基本就OK了。对于高级数据分析师,除了SQL以外,学习Python是很有必要的,用来获取和处理数据都是事半功倍。当然其他编程语言也是可以的。


4、业务理解


业务理解说是数据分析师所有工作的基础也不为过,数据的获取方案、指标的选取、乃至最终结论的洞察,都依赖于数据分析师对业务本身的理解。


5、逻辑思维


这项能力在我之前的文章中提的比较少,这次单独拿出来说一下。


对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。


6、数据可视化


数据可视化说起来很高大上,其实包括的范围很广,做个PPT里边放上数据图表也可以算是数据可视化,所以我认为这是一项普遍需要的能力。

⑸ 大数据分析师 应该要学什么知识

大数据分析师应该要学的知识有,统计概率理论基础,软件操作结合分析模型进行实际运用,数据挖掘或者数据分析方向性选择,数据分析业务应用。

1、统计概率理论基础

这是重中之重,千里之台,起于垒土,最重要的就是最下面的那几层。统计思维,统计方法,这里首先是市场调研数据的获取与整理,然后是最简单的描述性分析,其次是常用的推断性分析,方差分析,到高级的相关,回归等多元统计分析,掌握了这些原理,才能进行下一步。

2、软件操作结合分析模型进行实际运用

关于数据分析主流软件有(从上手度从易到难):Excel,SPSS,Stata,R,SAS等。首先是学会怎样操作这些软件,然后是利用软件从数据的清洗开始一步步进行处理,分析,最后输出结果,检验及解读数据。

3、数据挖掘或者数据分析方向性选择

其实数据分析也包含数据挖掘,但在工作中做到后面会细分到分析方向和挖掘方向,两者已有区别,关于数据挖掘也涉及到许多模型算法,如:关联法则、神经网络、决策树、遗传算法、可视技术等。

4、数据分析业务应用

这一步也是最难学习的一步,行业有别,业务不同,业务的不同所运用的分析方法亦有区分,实际工作是解决业务问题,因此对业务的洞察能力非常重要。

(5)数据分析要学什么知识扩展阅读

分析工作内容

1、搜索引擎分析师(Search Engine Optimization Strategy Analyst,简称SEO分析师)是一项新兴信息技术职业,主要关注搜索引擎动态,修建网站,拓展网络营销渠道,网站内部优化,流量数据分析,策划外链执行方案,负责竞价推广。

2、SEO分析师需要精通商业搜索引擎相关知识与市场运作。通过编程,HTML,CSS,JavaScript,MicrosoftASP.NET,Perl,PHP,Python等建立网站进行各种以用户体验为主同时带给公司盈利但可能失败的项目尝试。

⑹ 数据分析需要掌握哪些知识呢

数据分析师主要负责数据挖掘,使用Hive,Hbase等技术,专门为从事行业数据收集、整理、分析和基于数据的专业人士进行行业研究、评估和预测。通过使用Spotifre,Qlikview和Tableau等,新数据可视化工具能够实现数据的数据可视化和数据呈现。

⑺ 数据分析需要掌握哪些知识

1、数学知识。
数学知识是数据分析师的基础知识。对于初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力即可,了解常用统计模型算法则是加分。
对于高级数据分析师,统计模型相关知识是必备能力,线性代数(主要是矩阵计算相关知识)最好也有一定的了解。而对于数据挖掘工程师,除了统计学以外,各类算法也需要熟练使用,对数学的要求是最高的。
2、分析工具。
对于初级数据分析师,玩转Excel是必须的,数据透视表和公式使用必须熟练,VBA是加分。另外,还要学会一个统计分析工具,SPSS作为入门是比较好的。
对于高级数据分析师,使用分析工具是核心能力,VBA基本必备,SPSS/SAS/R至少要熟练使用其中之一,其他分析工具(如Matlab)视情况而定。
3、编程语言。
对于初级数据分析师,会写SQL查询,有需要的话写写Hadoop和Hive查询,基本就OK了。对于高级数据分析师,除了SQL以外,学习Python是很有必要的,用来获取和处理数据都是事半功倍。当然其他编程语言也是可以的。

⑻ 数据分析师要学什么

数据分析师需要具备的能力:

1、需要有应用数学、统计学、数量经济学专业本科或者工学硕士层次水平的数学知识背景。

2、至少熟练SPSS、STATISTIC、Eviews、SAS等数据分析软件中的一门。

3、至少能够用Acess等进行数据库开发;

4、至少掌握一门数学软件:matalab,mathmatics进行新模型的构建。

5、至少掌握一门编程语言;

6,当然还要其他应用领域方面的知识,比如市场营销、经济统计学等,因为这是数据分析的主要应用领域。

想了解更多关于数据分析师的信息,推荐到CDA数据分析认证中心看看,CDA 具体指在互联网、金融、零售、咨询、电信、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据人才。

⑼ 数据分析需要掌握什么知识

1. Excel


提到Excel大家都不陌生,很多小白非常喜欢用Excel来进行数据分析。即使是专业的分析人员,他们也会使用Excel处理聚合数据。


2. SQL语言


SQL(结构化查询语言)是一种用于处理和检索关系数据库中存储的数据的计算机语言,是关系数据库管理系统的标准语言。


3. 可视化工具


将数据可视化可以让人更加理解数据。人类都是视觉动物,图形往往比密密麻麻的文字更易于理解。


4. Python


Tableau、FineBI这一类的可视化工具,的确可以自动生成报告。但是,如果想要进行更深入的探索,你需要学习Python来进行数据挖掘。


Python是一种面向对象的高级编程语言,主要用于Web以及应用程序的开发。Python拥有图形和可视化工具、以及扩展的分析工具包,能够更好地帮助我们进行数据分析。


5. SAS


SAS(统计分析软件)是一套模块化的大型集成应用软件系统。它由数十个专用模块构成,功能包括数据访问、数据储存及管理、应用开发、图形处理、数据分析、报告编制、运筹学方法、计量经济学与预测等等。因此,SAS能够对数据进行深层次的挖掘和分析。


6. Alteryx


Alteryx是一种自助服务分析工具。用户可以快速混合和准备数据,即便没有任何编程能力的人,也可以在Alteryx中构建数据工作流。同时,Alteryx的运行速度也非常快。使用拖放式工作流程和数据清理技术,仅需几分钟,你就能得到输出结果。

⑽ 数据分析需要掌握哪些知识

从学科知识来看,数据分析涉及到一下的知识要点:
(1)统计学:参数检验、非参检验、回归分析等
(2)数学:线性代数、微积分等。
数据分析师需要的技能大致有这些:Excel、SQL、统计学及SPSS、Python/R等。

阅读全文

与数据分析要学什么知识相关的资料

热点内容
隐藏的程序什么也看不见 浏览:817
工程技术专业能考什么证书 浏览:358
百能的不锈钢橱柜市场什么价位 浏览:209
三岔口菜市场在哪里 浏览:308
跳蚤市场图书怎么做 浏览:233
七月份的数据有什么用 浏览:580
废锡渣多少钱一公斤市场价 浏览:562
淘手游交易金额多少才能立案 浏览:782
如何做好带货小程序 浏览:75
2020年周边有哪些新建农贸市场 浏览:283
涂料的产品怎么样 浏览:583
怎么多循环一次程序 浏览:158
大商所交易系统是什么 浏览:386
徐步天交易要多少天 浏览:22
哪个手机app可以模拟交易美股 浏览:819
爱情虚假交易是什么意思 浏览:459
番禺哪里有鲜花批发市场 浏览:565
山东修正健康饮品怎么代理 浏览:786
数据比较多复制是哪个键 浏览:476
批发市场的东西为什么这么便宜 浏览:898