A. 大数据bi是什么
大数据BI是能够处理和分析大数据的BI软件,区别于传统BI唻软件垍头,大条数据BI可以完成对TB级别数据的实时分析。大数据可以概括为4个V,数据量大(Volume)、速度快(Velocity)、类型多(Variety)、价值密度低(Veracity)。大数据作为时下最火热的IT行业的词汇,随之而来的数据仓库、数据安全、数据分析、数据挖掘等等围绕大数据的商业价值的利用逐渐成为行业人士争相追捧的利润焦点。随着大数据时代的来临,大数据BI也应运而生。
主要功能
编辑
开源大数据生态圈
1.HadoopHDFS、HadoopMapRece,HBase、Hive渐次诞生,早期Hadoop生态圈逐步形成。
2.Hypertable是另类。它存在于Hadoop生态圈之外,但也曾经有一些用户。
一体机数据库/数据仓库
IBMPureData(Netezza),OracleExadata,SAPHana等等。
数唻垍头条据仓库
TeradataAsterData,EMCGreenPlum,HPVertica等等。
数据集市
QlikView、Tableau、国内永洪科技YonghongDataMart等等。
YonghongDataMart是基于自有技术研发的一款数据存储、数据处理的软件。针对客户需要处理需求数据的量级不同,IT系统架构的不同和存储系统的不同,提供了两种解决方案供客户选择一种本地模式,一种是MPP模式。当需要处理的数据量级别处于TB级以下,或者采用普通存储结构,或者单机已经足够满足性能需求,建议用户选择本地模式。当面对异构数据库存储系统,需要处理的数量级别在TB级和PB级以上,或者IT系统和存储系统采用分布式,或者需要MPP模式才能满足性能需求,基于分布式架构的并行处理模式更适合客户的需求。
B. 商业智能bi,大数据,传统报表,数据分析有何区别
数据分析:是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。
大数据(big data):指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
传统报表:向上级报告情况的表格。简单的说:报表就是用表格、图表等格式来动态显示数据。
商业智能:BI(Business Intelligence)即商务智能,它是一套完整的解决方案,用来将企业中现有的数据进行有效的整合,快速准确地提供报表并提出决策依据,帮助企业做出明智的业务经营决策。
商业智能数据分析工具有Tableau、DataFocus等等
C. 大数据和BI商业智能有何区别有何相关_bi商业智能是做什么的
之所以要区分大数据应用与BI(商业智能),是因为大数据应用与BI、数据挖掘等,并没有一个相对完整的认知。
BI()即商务智能,它是一套完整的解决方案,用来将企业中现有的数据进行有效的整合,快速准确的提供报表并提出决策依据,帮助企业做出明智的业务经营决策。
伴随着BI的发展,是ETL,数据集成平台等概念的提出。ETL,ExtractionLoading,数据提取、转换和加载,数据集成平台主要功能对各种业务数据进行抽取和相关转化,以此来满足BI、数据仓库对数据格式和内容挖掘的要求。
数据集成平台的基础工作与ETL有很大的相似性,其主要功能是实祥兆现不同系统不同格式数据地抽取,并且按照目标需求转化成为相应的格式。数据集成开始是点对点的,慢慢地发现这种模式对于系统之间,不同所有权的企业数据流向以及数据标准控制很难,为谨宴拦此,诞生了对统一企业数据平台的需求,来实现企业级之间的数据交互。
数据集成平台就像网络中Hub,可以连接所有应用系统,实现系统之间数据的互通有无。数据集成平台以BI、数据仓库需求而产生,现在已经跨越了最初的需求,上升到祥胡了一个更高的阶段。
如今大数据应用更多关注非结构化数据,更多谈论互联网,Twitter、Facebook、博客等非结构化数据,如此理解大数据应用,显然就有些走偏了。结构化数据也属于大数据,且呈现出相同的特点和特征,如数据量大,增长越来越快,对数据处理要求高等。
结构化数据是广义大数据中含金量或者价值密度最高的一部分数据,与之相比,非结构化数据含金量高但价值密度低。在Hadoop平台出现之前,没有人谈论大数据。数据应用主要是结构化数据,多采用IBM、HP等老牌厂商的小型机或服务器设备。
采用传统方法处理这些价值密度低的非结构化数据,被认为是不值得的,因为其产出实在是有限。Hadoop平台出现之后,提供了一种开放的、廉价的、基于普通商业硬件的平台,其核心是分布式大规模并行处理,从而为非结构化数据处理创造条件。
大数据应用的数据来源应该包括结构化数据,如各种数据库、各种结构化文件、消息队列和应用系统数据等,其次才是非结构化数据,又可以进一步细分为两部分,一是社交媒体,如Twitter、Facebook、博客等产生的数据,包括用户点击的习惯/特点,发表的评论,评论的特点,网民之间的关系等,这些都构成了大数据来源。另外一部分数据,也是数据量比较大的数据,就是机器设备以及传感器所产生的数据。以电信行业为例,CDR、呼叫记录,这些数据都属于原始传感器数据,主要来自路由器或者基站。此外,手机的置传感器,各种手持设备、门禁系统,摄像头、ATM机等,其数据量也非常巨大。
对于分析大数据的工具,目前所有的分析工具都侧重于结构化分析,例如针对社交媒体评论方向的分析,根据特定的词频或者语义,通过统计正面/负面评论的比例,来确定评论性质。如果有一个应用系统是接收结构化数据的,例如一个分析系统,接收这些语义就可以便于分析。(速鸿科技-BI商业智能大数据分析工具与服务提供商)
D. 大数据 BI两者什么关系企业用BI吗
在商务领域,应用大数据和应用BI到底有什么区别,好像都是和数据分析、数据挖掘到最后的数据结果有关系,随着大数据和BI的发展,又有声音说BI将会替代大数据,到底BI和大数据两者什么关系。
第三、发展方向不同
BI的发展要从传统的商务智能模式开始转换,对于企业来说,BI不仅仅是一个IT项目,更是一种管理和思维的方式,从技术的部署到业务的流程规划,BI迎来新的发展。对于大数据来说,现阶段更多的大数据关注在非结构化数据,不同的数据分析工具的出现和行内的应用范围不断的加大,对于大数据应用来说,怎么与应用的行业进行一个深层次的结合才是最重要的。
伴随BI的发展,BI的应用范围越来越广,对于大数据来说,一些传统的BI工具实现不了的数据结果分析,往往也会给大数据带来意想不到的发展空间。
如果是企业,考虑实用性的话,BI工具在企业的信息化建设方面更具有优势,而且是个大趋势,国内很多商业智能软件比如FineBI会更贴近国内企业的情况,可以了解一下。
E. 什么叫大数据
大数据概述
专业解释:大数据英文名叫big data,是一种IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
通俗解释:大数据通俗的解释就是海量的数据,顾名思义,大就是多、广的意思,而数据就是信息、技术以及数据资料,合起来就是多而广的信息、技术、以及数据资料。
大数据提出时间
“大数据”这个词是由维克托·迈尔-舍恩伯格及肯尼斯·库克耶于2008年8月中旬共同提出。
大数据的特点
Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)-由IBM提出。
大数据存在的意义和用途是什么?
看似大数据是一个很高大上的感觉,和我们普通人的生活相差甚远,但是其实不然!大数据目前已经存在我们生活中的各种角落里了,举个例子,我们现在目前最关心的疫情情况数据,用的就是大数据的技术,可以实时查看确诊人数以及各种疫情数据。
大数据存在的意义是什么?
从刚才的举例中我们基本可以了解,大数据是很重要的,其存在的意义简单来说也是为了帮助人们更直观更方便的去了解数据。而通过了解这些数据后又可以更深一步的去挖掘其他有价值的数据,例如今日头条/抖音等产品,通过对用户进行整理和分析,然后根据用户的各种数据来判断用户的喜爱,进而推荐用户喜欢看的东西,这样做不仅提升了自身产品的体验度,也为用户提供了他们需要的内容。
大数据的用途有哪些?
要说大数据的用途,那可就相当广泛了,基本各行各业都可以运用到大数据的知识。如果简单理解的话,可分为以下四类:
用途一:业务流程优化
大数据更多的是协助业务流程效率的提升。能够根据并运用社交网络数据信息 、网站搜索及其天气预告找出有使用价值的数据信息,这其中大数据的运用普遍的便是供应链管理及其派送线路的提升。在这两个层面,自然地理精准定位和无线通信频率的鉴别跟踪货物和送大货车,运用交通实时路况线路数据信息来选择更好的线路。人力资源管理业务流程也根据大数据的剖析来开展改善,这这其中就包含了职位招聘的调整。
用途二:提高医疗和研发
大型数据分析应用程序的计算能力允许我们在几分钟内解码整个dna。可以创造新的治疗方法。它还能更好地掌握和预测疾病。如同大家配戴智能手表和别的能够转化成的数据信息一样,互联网大数据还可以协助病人尽快医治疾患。现在大数据技术已经被用于医院监测早产儿和生病婴儿的状况。通过记录和分析婴儿的心跳,医生预测可能的不适症状。这有助于医生更好地帮助宝宝。
用途三:改善我们的城市
大数据也被用于改进我们在城市的生活起居。比如,依据城市的交通实时路况信息,运用社交媒体季节变化数据信息,增加新的交通线路。现阶段,很多城市已经开展数据分析和示范点新项目。
用途四:理解客户、满足客户服务需求
互联网大数据的运用在这个行业早已广为人知。重点是如何使用大数据来更好地掌握客户及其兴趣和行为。企业非常喜欢收集社交数据、浏览器日志、分析文本和传感器数据,以更全面地掌握客户。一般来说,建立数据模型是为了预测。
如何利用大数据?
那我们了解了这么多关于大数据的知识,既然大数据这么好,我们怎么去利用大数据呢?那这个就要说到大数据的工具BI了,BI简单理解就是用来分析大数据的工具,从数据的采集到数据的分析以及挖掘等都需要用到BI,BI兴起于国外,比较知名的BI工具有Tableau、Power BI等;而国内比较典型的厂家就是亿信华辰了。虽然BI兴起于国外,但是这些年随着国内科技的进步以及不断的创新,目前国内BI在技术上也不比国外的差,而且因为国内外的差异化,在BI的使用逻辑上,国内BI更符合国内用户的需求。
希望对您有所帮助!~
F. 什么是bi大数据,对企业有什么帮助
大数据BI是主要体现在数据处理量大方面脊指,可以完成TB级别数据的实时分析。
因此其在数据仓库构建方面的要求较高。现在很多数据软件要不侧重于数据处理,这一定有点像大数据靠拢,要不侧重于可视化分析。
其实对于企业来讲,他们所需要的是数据落地,数据分析工作与行业和业务的深度融合,将企业中现有的数据进行有效的整樱昌配合,建成一个全面而稳固的数据信息化网络,而后为管理者提供报表并提出决策依据,帮助企业做出明智的业务经营决策。
从技术角度来讲,BI得具有深度的应用性,兼顾数据处迅码理分析和可视化展示,这一方面帆软公司的FineBI发展趋势是比较不错的。
G. 大数据、BI、AI,三者之间的关系是什么
BI目前实现的是收集数据,提供反馈,辅助决策的能力,以数据为基础的,面向数据管理和分析,属被动角色。而AI则辅以大数据,算法等得到更有价值的信息,实现收集+预测的能力,更多的是主动角色。
虽然AI的应用范围非常广,但结合BI现仍是处理结构化的数据。而此处二者的交集在于机器学习和数据挖掘,但又略有不同。AI的机器学习强调算法,BI的数据挖掘还包括对数据的管理,算法选择上也较为简单,没有神经网络和深度学习等复杂AI算法。
未来,AI与BI的区别在于BI负责梳理生产关系,AI是先进生产力。那么AI+BI模式通过将AI嵌入BI,构建基于AI的BI平台,利用AI的智能让BI系统能够解决更复杂的业务场景,产出更精准的分析结果,从而使决策更为科学和准确。
对于结构化的数据,BI系统可应用机器学习算法,得到更精确的分析结果。例如上文提到的总结用户画像,分析人群行为数据,得到千人千面,实现精准营销的结果。还有金融领域的风险监测,AI+BI的模式可以分析出金融风险和其他指标、行为之间的内在联系,预测更为准确。
对于非结构化的数据,BI可以应用图像处理、语音工程和文本分析等AI技术,智能化地处理复杂业务场景。如语音转文字,录入数据及产出想要的报表等。
业务场景除了在 IT 信息化基础比较扎实的行业,也会在深度场景化的细分领域,且这些领域不具备通用性。也可理解为解决方案不具备复用性。这个时候通过AI完成一些算法匹配,根据匹配的结果来驱动业务执行。
H. 什么是bi,bi在大数据中的地位
BI是商务智能,(Business Intelligence,简称:BI),又称商业智慧或商务智能,指用现代数据仓库技术、线上分析处理技术、数据挖掘和数据展现技术进行数据分析以实现商业价值。
其实算早期的数据分析工业化产物,说白了就是做报表的技术,现在流行做数据挖掘,机器学习
但报表还是要看的,
I. 大数据与BI都有哪些区别
1、从思维方式角度
大数据对于传统BI,既有继承,也有发展,从”道”的角度讲,BI与大数据区别在于前者更倾向于决策,对事实描述更多是基于群体共性,帮助决策者掌握宏观统计趋势,适合经营运营指标支撑类问题,大数据则内涵更广,倾向于刻画个体,更多的在于个性化的决策。
2、从工具的角度
传统BI使用的是ETL、数据仓库、OLAP、可视化报表技术,属于应用和展示层技术,目前都处于淘汰的边缘,因为它解决不了海量数据(包括结构化与非结构化)的处理问题。而大数据应用的是一个完整的技术体系,包括用Hadoop、流处理等技术解决海量的结构化、非结构化数据的ETL问题,用Hadoop、MPP等技术计算海量数据的计算问题,用redis、HBASE等方式解决高效读的问题,用Impala等技术实现在线分析等问题。因此是个全新的行业。
3、从数据来御蠢老源角度
大数据应用的数据来源,不仅仅包括非结构化的数据,还有各种系统数据,数据库数据。其中非结构化数据主要是集中在互联网以及一些社交网站上的数据以及一些机器设备的数据,这些都构成了大数据应用的数据来源。对于大数据的分析工具来说,现阶段也是对于非结构化的数据分析的比较多。
BI系统则是在数据集成方面的技术越来越成熟,对于数据的提取,一个各种数据挖掘的要求来说,数据集成平台会帮助企业实现数据的流通和交互使用,在企业内部实施BI应用就是为了可以更好的对数据进行分享和使用。
4、从发展方向角度
BI的发展要从传统的商务智档册能模式开始转换,对于企业来说,BI不仅仅是一个IT项目,更是一种管理和思维的方式,从技术的部署到业务的流程规划,BI迎来新的发展。对于大数据来说,现阶段更多的大数据关注在非结构化数据,不同的数据分镇升析工具的出现和行内的应用范围不断的加大,对于大数据应用来说,怎么与应用的行业进行一个深层次的结合才是最重要的。
J. 大数据,数据挖掘,BI,ERP之间的联系,主要围绕ERP,简明扼要一点
大数据:顾名思义,数据量大,会对后面的分析和挖掘造成一定的难度。
数据挖掘:在数据基础上继续挖掘和分析,挖掘更多的是做分析和预测。
BI:一般是指商业智能工具,可进行数据分析与展示,BI工具可做一定的挖掘工作。
ERP:是指建立在信息技术基础上,通过先进管理思想和方法,对企业内部资源和外部资源进行整合,通过标准化的数据和业务操作流程,把企业的人、财、物等进行紧密集成,最后实现资源优化配置和业务流程优化目的的方法。
大数据如果要进行BI分析,有一定难度,因为BI分析对实时性要求高,最好选择好的BI工具,然后再结合ERP产品,ERP产品选择面相对宽松些,可根据自身情况决定。在当今社会,是依靠数据竞争的社会,考一门具有公立性、权威性、前沿性的证书是很有必要的。
想要了解更多有关数据的分析,CDA数据分析师就是非常不错的选择。课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。这种教学方式能够引发学员的独立思考及主观能动性,学员掌握的技能知识可以快速转化为自身能够灵活应用的技能,在面对不同场景时能够自由发挥。点击预约免费试听课。