Ⅰ 有哪些数据分析软件,哪个比较好
思迈特软件Smartbi 软件在国内BI 领域处于领先地位,产品广泛应用于金融、政府、制造、零售、地产等众多行业,拥有3000+行业头部客户。Ⅱ 大数据处理软件用什么比较好
常见的数据处理软件有Apache Hive、SPSS、Excel、Apache Spark、Jaspersoft BI 套件。
1、Apache Hive
Hive是一个建立在Hadoop上的开源数据仓库基础设施,通过Hive可以很容易的进行数据的ETL,对数据进行结构化处理,并对Hadoop上大数据文件进行查询和处理等。 Hive提供了一种简单的类似SQL的查询语言—HiveQL,这为熟悉SQL语言的用户查询数据提供了方便。
数据分析与处理方法:
采集
在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。
并且如何在这些数据库之间进行负载均衡和分片的确是需要深入的思考和设计。
统计/分析
统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的大量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等。
而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
导入/预处理
虽然采集端本身会有很多数据库,但是如果要对这些大量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。
也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
Ⅲ 数据分析用什么软件
做数据分析,比较好用的软件有哪些?
数据分析软件有很多种,每一种都适合不同类型的人员。
简单说:
Excel:普遍适用,既有基础,又有中高级。中级一般用Excel透视表,高级的用Excel VBA。
hihidata:比较小众的数据分析工具。三分钟就可以学会直接上手。无需下载安装,直接在线就可以使用。
SPSS:专业统计软件,没有统计功底很难用的。同时包含了数据挖掘等高大功能。
SAS:专业统计软件,专业人士用的,不懂编程还是不要碰了。
MARLAB:建立统计与数学模型,但是比较难学,很难上手。
Eview:比较小众,建立一些经济类的模型还是很有用的。计量经济学中经常用到。
各种BI与报表工具:FineBI,FineReport,tableau,QlikView等。
比较好的数据分析软件有哪些?
SPSS是软件里比较简单的 ,学校里使用的比较多一些,可以采用菜单的模式 带少量的命令编辑MATLAB常常在建立统计和数学模型的时候比较好用 但是很难学 反正我学了一个学期楞是就知道个皮毛Finereport 兼顾了基本的数据录入与展现功能,一般的数据源都支持,学习成本比较低,比较适合企业级用户使用,SAS我没用过
网站数据分析工具哪个好用些阿?
推荐吆喝科技的ab测试,软件分析的数据比较全面和精准
学数据分析需要熟悉哪些软件基础
软件只是一个工具 看你要从事的数据分析的方向很深度而定
一般的用excel也可以进行常规简单的数据分析
再深入一点的用spss、stata、sas
如果要搞数据挖掘的话,用spss modeler / sas
不过一般的常规数据分析用excel和spss基本上能够应付
常用的数据分析工具有哪些
数据分析的概念太宽泛了,做需要的是侧重于数据展示、数据挖掘、还是数据存储的?是个人用还是企业、部门用呢?应用的场景是制作简单的个人图表,还是要做销售、财务还是供应链的分析?
那就说说应用最广的BI吧,企业级应用,其实功能上已经涵盖了我上面所述的部分,主要用于数据整合,构建分析,展示数据供决策分析的,譬如FineBI,是能够”智能”分析数据的工具了。
android数据分析工具用什么软件
1. 开源大数据生态圈
Hadoop HDFS、Hadoop MapRece, HBase、Hive 渐次诞生,早期Hadoop生态圈逐步形成。
开源生态圈活跃,并免费,但Hadoop对技术要求高,实时性稍差。
2. 商用大数据分析工具
一体机数据库/数据仓库(费用很高)
IBM PureData(Netezza), Oracle Exadata, SAP Hana等等。
数据仓库(费用较高)
Teradata AsterData, EMC GreenPlum, HP Vertica 等等。
数据集市(费用一般)
QlikView、 Tableau 、国内永洪科技Yonghong Data Mart 等等。
前端展现
用于展现分析的前端开源工具有JasperSoft,Pentaho, Spagobi, Openi, Birt等等。
用于展现分析商用分析工具有Cognos,BO, Microsoft, Oracle,Microstrategy,QlikView、 Tableau 、国内永洪科技Yonghong Z-Suite等等。
数据分析软件有哪些,他们分别的特点是什么
除了EXCEL 数据分析用的多的有以下几个软件,你看看你们公司符合哪个
SPSS(StatisticalProct and Service Solutions),“统计产品与服务解决方案”软件,是数据定量分析的工具,适用于社会科学(如经济分析,市场调研分析)和自然科学等林林总总的统计分析,国内使用的最多,领域也多。
SPSS就如一个傻瓜相机,界面友好,使用简单,但是功能强大,可以编程,能解决绝大部分统计学问题,适合初学者。它有一个可以点击的交互界面,能够使用下拉菜单来选择所需要执行的命令。它也有一个通过拷贝和粘贴的方法来学习其“句法”语言,但是这些句法通常非常复杂而且不是很直观。
SPSS致力于简便易行(其口号是“真正统计,确实简单”),并且取得了成功。但是如果你是高级用户,随着时间推移你会对它丧失兴趣。SPSS是制图方面的强手,由于缺少稳健和调查的方法,处理前沿的统计过程是其弱项。
SAS是全球最大的软件公司之一,是全球商业智能和分析软件与服务领袖。SAS由于其功能强大而且可以编程,很受高级用户的欢迎,也正是基于此,它是最难掌握的软件之一,多用于企业工作之中。
SAS就如一台单反相机,你需要编写SAS程序来处理数据,进行分析。如果在一个程序中出现一个错误,找到并改正这个错误将是困难的。在所有的统计软件中,SAS有最强大的绘图工具,由SAS/Graph模块提供。然而,SAS/Graph模块的学习也是非常专业而复杂,图形的制作主要使用程序语言。SAS适合高级用户使用。它的学习过程是艰苦的,正所谓“五年入门,十年精通”,最初的阶段会使人灰心丧气。然而它还是以强大的数据管理和同时处理大批数据文件的功能,得到高级用户的青睐。
R 是用于统计分析、绘图的语言和操作环境,属于GUN系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具,多用于论文,科研领域。
R的思想是:它可以提供一些集成的统计工具,但更大量的是它提供各种数学计算、统计计算的函数,从而使使用者能灵活机动的进行数据分析,甚至创造出符合需要的新的统计计算方法。因此R有很多最新的模型和检验方法,但是非常难自学,对英语的要求很高。R与SAS的区别在于,R是开放免费的,处理更灵活,同时对编程要求较高。
大数据是什么意思?哪些软件适合大数据分析?
大数据定义什么的网络很多。个人理解:现有的互联网数据量越来越大,面对这么大的数据量,如何利用好这些数据是极具挑战性的。一方面数据量提升,数据处理的方法必须改变,才能提高数据处理速度,比如大规模,高并发的网站访问,12306,淘宝天猫什么的;另一方面从这些海量数据中挖掘出有用的信息,比如根据淘宝根据用户点击访问,反馈出用户的喜好,给用户推荐相关商品。
推荐Hadoop,适合大数据处理的。
网上学习资料很多,自己搜去!
当然你也可以自己使用数据库MYSQL等去做大数据处理,这样很多Hadoop做好的东西都需要你自己去做。要是熟悉某个数据库,并且应用明确就用数据库自己去做吧!
加油!
数据分析软件哪个好
最常用的是spss,属于非专业统计学的! sas是专业的统计分析软件,需要编程用,都是专业人士用的 数据分析中的数据挖掘,可以使用spss公司的clementine
大数据分析一般用什么工具分析
在大数据处理分析过程中常用的六大工具:
Hadoop
Hadoop 是一个能够对大量数据进行分布式处理的软件框架。但是 Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop 还是可伸缩的,能够处理 PB 级数据。此外,Hadoop 依赖于社区服务器,因此它的成本比较低,任何人都可以使用。
HPCC
HPCC,High Performance puting and munications(高性能计算与通信)的缩写。1993年,由美国科学、工程、技术联邦协调理事会向国会提交了“重大挑战项目:高性能计算与 通信”的报告,也就是被称为HPCC计划的报告,即美国总统科学战略项目,其目的是通过加强研究与开发解决一批重要的科学与技术挑战问题。HPCC是美国 实施信息高速公路而上实施的计划,该计划的实施将耗资百亿美元,其主要目标要达到:开发可扩展的计算系统及相关软件,以支持太位级网络传输性能,开发千兆 比特网络技术,扩展研究和教育机构及网络连接能力。
Storm
Storm是自由的开源软件,一个分布式的、容错的实时计算系统。Storm可以非常可靠的处理庞大的数据流,用于处理Hadoop的批量数据。Storm很简单,支持许多种编程语言,使用起来非常有趣。
Apache Drill
为了帮助企业用户寻找更为有效、加快Hadoop数据查询的方法,Apache软件基金会近日发起了一项名为“Drill”的开源项目。Apache Drill 实现了 Google's Dremel.
据Hadoop厂商MapR Technologies公司产品经理Tomer Shiran介绍,“Drill”已经作为Apache孵化器项目来运作,将面向全球软件工程师持续推广。
RapidMiner
RapidMiner是世界领先的数据挖掘解决方案,在一个非常大的程度上有着先进技术。它数据挖掘任务涉及范围广泛,包括各种数据艺术,能简化数据挖掘过程的设计和评价。
Pentaho BI
Pentaho BI 平台不同于传统的BI 产品,它是一个以流程为中心的,面向解决方案(Solution)的框架。其目的在于将一系列企业级BI产品、开源软件、API等等组件集成起来,方便商务智能应用的开发。它的出现,使得一系列的面向商务智能的独立产品如Jfree、Quartz等等,能够集成在一起,构成一项项复杂的、完整的商务智能解决方案。
Ⅳ 做数据分析,比较好用的软件有哪些
虽然数据分析的工具千万种,综合起来万变不离其宗。无非是数据获取、数据存储、数据管理、数据计算、数据分析、数据展示等几个方面。而SAS、R、SPSS、python、excel是被提到频率最高的数据分析工具。
Python
Python,是一种面向对象、解释型计算机程序设计语言。Python语法简洁而清晰,具有丰富和强大的类库。它常被昵称为胶水语言,能够把用其他语言制作的各种模块(尤其是C/C++)很轻松地联结在一起。
常见的一种应用情形是,使用Python快速生成程序的原型(有时甚至是程序的最终界面),然后对其中有特别要求的部分,用更合适的语言改写,比如3D游戏中的图形渲染模块,性能要求特别高,就可以用C/C++重写,而后封装为Python可以调用的扩展类库。需要注意的是在您使用扩展类库时可能需要考虑平台问题,某些可能不提供跨平台的实现。
R软件
R是一套完整的数据处理、计算和制图软件系统。它可以提供一些集成的统计工具,但更大量的是它提供各种数学计算、统计计算的函数,从而使使用者能灵活机动的进行数据分析,甚至创造出符合需要的新的统计计算方法。
SPSS
SPSS是世界上最早的统计分析软件,具有完整的数据输入、编辑、统计分析、报表、图形制作等功能,能够读取及输出多种格式的文件。
Excel
可以进行各种数据的处理、统计分析和辅助决策操作,广泛地应用于管理、统计财经、金融等众多领域。
SAS软件
SAS把数据存取、管理、分析和展现有机地融为一体。提供了从基本统计数的计算到各种试验设计的方差分析,相关回归分析以及多变数分析的多种统计分析过程,几乎囊括了所有最新分析方法,其分析技术先进,可靠。分析方法的实现通过过程调用完成。许多过程同时提供了多种算法和选项。
Ⅳ 数据分析软件哪个好
分析软件我觉得思迈特软件Smartbi的思迈特软件Smartbi 还是很不错的,思迈特软件Smartbi在大数据审计分析中的应用重点包括跨库查询、高性能存储、疑点生成、自助分析、数据报送、财务分析、专题分析、自动取证单、大屏报送等:Ⅵ 比较好的数据分析软件有哪些
数据分析软件有很多。只要是满足自己需求的都是最好的。大数据分析工具在数据收集、数据管理上也要有一些要求。Ⅶ 数据分析工具类软件,好用的有哪些
未至科技魔方是一款大数据模型平台,是一款基于服务总线与分布式云计算两大技术架构的一款数据分析、挖掘的工具平台,其采用分布式文件系统对数据进行存储,支持海量数据的处理。采用多种的数据采集技术,支持结构化数据及非结构化数据的采集。通过图形化的模型搭建工具,支持流程化的模型配置。通过第三方插件技术,很容易将其他工具及服务集成到平台中去。数据分析研判平台就是海量信息的采集,数据模型的搭建,数据的挖掘、分析最后形成知识服务于实战、服务于决策的过程,平台主要包括数据采集部分,模型配置部分,模型执行部分及成果展示部分等。
分析软件有Excel、SPSS、MATLAB、 SAS、Finereport等 其中Excel我就不多说了相信大家都懂。 SPSS是世界上最早采用图形菜单驱动界面的统计软件它将几乎所有的功能都以统一、规范的界面展现出来。SPSS采用类似EXCEL表格的方式输入与管理数据,数据接口较为通用,能方便的从其他数据库中读入数据。其统计过程包括了常用的、较为成熟的统计过程,完全可以满足大部分的工作需要。 MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境使用的。 其优点如下: 一、高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来; 二、 具有完备的图形处理功能,实现计算结果和编程的可视化; 三、友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握; 四、功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,为用户提供了大量方便实用的处理工具。 但是这款软件的使用难度较大,非专业人士不推荐使用。 SAS是把数据存取,管理,分析和展现有机地融为一体。其功能非常强大统计方法齐,全,新。它由数十个专用模块构成,功能包括数据访问、数据储存及管理、应用开发、图形处理、数据分析、报告编制、运筹学方法、计量经济学与预测等。SAS系统基本上可以分为四大部分:SAS数据库部分;SAS分析核心;SAS开发呈现工具;SAS对分布处理模式的支持及其数据仓库设计。不过这款软件的使用需要一定的专业知识,非专业人士不推荐使用。 Finereport类EXCEL设计模式,EXCEL+绑定数据列”形式持多SHEET和跨SHEET计算,完美兼容EXCEL公式,用户可以所见即所得的设计出任意复杂的表样,轻松实现中国式复杂报表。它的功能也是非常的丰富,比如说 数据支持与整合、聚合报表、数据地图、Flash打印、交互分析等
BI数据分析工具这个可以。BI数据分析系统用来将企业中现有的数据进行有效的整合,快速准确地提供报表并提出决策依据,帮助企业做出明智的业务经营决策。
做BI数据分析系统十多年的厂 商(奥威 软件)
spss,excel,在线spss-spssau,R等等。最好用的是在线网页spssau。
大数据分析的几个方面:
1、可视化分析:可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。
2、数据挖掘算法:大数据分析的理论核心就是数据挖掘算法。
3、预测性分析:从大数据中挖掘出特点,通过科学的建立模型,从而预测未来的数据。
4、语义引擎:需要设计到有足够的人工智能以足以从数据中主动地提取信息。
5、数据质量和数据管理:能够保证分析结果的真实性。
目前市场上的数据分析工具还是比较多的,国内跟国外都有,我就介绍几款主流的给楼主。
国外:
Tableau:自身定位是一款可视化工具,与Qlikview的定位差不多,可视化功能很强大,对计算机的硬件要求较高,部署较复杂。目前移动端只支持IOS系统。
Qlikview:最大的竞争者是Tableau,同Tableau和国内众多BI一样,是属于新一代的轻量化BI产品,体现在建模、部署和使用上。只能运行在windows系统,C/S的产品架构。采用内存动态计算,数据量小时,速度很快;数据量大时,吃内存很厉害性能偏慢。
Cognos:传统BI工具中最被广泛使用的,已被IBM收购。拥有强大的数据库平台、在数据管理、数据整合以及中间件领域专业功底深厚。偏操作型,手工建模,一旦需求变化需要 重新建模,学习要求较高。
国内:
FineBI:帆软旗下的自助性BI产品,轻量化的BI工具,部署方便,走多维分析方向。后期采用jar包升级换代,维护方便,最具性价比。
永洪BI:敏捷BI软件,产品稳定性较高。利用sql处理数据,不支持程序接口,实施交由第三方外包。
当前流行的图形可视化和数据分析软件有Matlab,Mathmatica和Maple等。这些软件功能强大,可满足科技工作中的许多需要,但使用这些软件需要一定的计算机编程知识和矩阵知识,并熟悉其中大量的函数和命令。
瑭锦tanjurd解释而使用Origin就像使用Excel和Word那样简单,只需点击鼠标,选择菜单命令就可以完成大部分工作,获得满意的结果。 但它又比excel要强大些。一般日常的话可以用Excel,然后加载宏,里面有一些分析工具,不过有时需要数据库软件支持。
Ⅷ 好用的数据分析软件有哪些
1、思迈特软件Smartbi专注于商业智能(BI)、数据分析软件产品与服务。