㈠ 数据资产管理包括哪些内容
数据资产管理包含数据标准管理、数据模型管理、元数据管理、主数据管理、数据质量管理、数据安全管理、数据价值管理、数据共享管理等8个管理。
1、数据标准是指保障数据内外部使用和交换一致性和准确性、规范性的约束,数据标准管理关键活动的第一个是理解数据标准化的需求,即任何一个管理活动都要和企业的战略规划、企业的需求紧密地结合。
数据标准管理的第二个关键活动就是制定数据标准的体系与规范,第三个是制定相应的管理办法以及实施流程要求,第四个是建立一些数据标准的管理工具。
2、数据模型是现实世界数据特征的抽象。数据模型包括三个:
概念模型,概念模型是面向用户与客观实践的,构建概念模型的本身与数据库或者数据仓库的架构搭建没有特别多的关系。
在建立了概念模型的基础之上可以构建逻辑模型,逻辑模型是面向业务的,用于指导一些数据库系统的实现。
物理模型,物理模型是基于逻辑模型,面向计算机物理表示,考虑了操作系统、硬件模型等等,描述数据在存储介质上的结构。
3、元数据管理,以二维表为例,想描述一个二维表信息的话,可以描述它每一行、每一页,也可以提取这个表中的一些抽象化或者是更高层次的信息,比如说这些表的字段或者表的结构以及表的大小等等,这样就对这个表格进行了数据的描述。
可以帮助实现关键信息的追踪与记录,快速掌握元数据的变化可能带来的风险。
元数据非常关键的运用是进行血缘分析和影响分析,通过进行血缘分析和影响分析可以了解数据走向,知道数据是从哪里来到哪里去,也可以构建数据地图和数据目录自动提取元数据信息,了解这个企业目前拥有数据资产情况。
4、主数据管理,比如说供应商数据、物料数据、客户数据、员工数据。主数据管理可以使企业跨系统使用一致的和共享的数据,从而可以降低成本和复杂度,来支撑跨部门、跨系统数据融合的应用。
主数据的关键活动包括识别主数据、定义和维护主数据的架构以及实现数据库与主数据库的同步。
主数据管理在很多行业成为企业开展数据资产管理的切入点。通过对主数据的梳理和管理,将建立数据的一个参考,为数据标准后期的管理节约很多的人力和物力。
5、数据质量管理,可以帮助企业获得一些干净以及结构清晰的数据,进而可以提高数据应用和服务的水平。数据质量好坏的衡量指标一般包括完整性、规范性、一致性、准确性、唯一性、时效性。
在定义数据质量管理时应该将管理过程中成本考虑进去。同样还需要和企业的业务需求紧密结合找到平衡点。数据质量管理其他的关键活动包括持续的测量、监控数据的质量、分析数据质量产生问题的根本原因,以及制定数据质量的改善方案,监控数据质量管理操作和绩效等等。
6、数据安全管理,主要是对数据设定一些安全等级来评估数据的安全风险,来完善数据安全管理相关的技术规范,通过对数据进行全生命周期的安全管控,包括数据的生成、存储、使用、共享、销毁等实现事中前可管、事中可控、事后可查。
7、数据价值管理,通过从数据的成本和数据的应用价值两个方面的度量,使企业能够最优化、最大化释放数据的价值。成本价值计量可以从采集、存储、计算成本进行评估,也可以从运维成本评估,还可以从数据的活性以及数据质量应用场景的经济性等角度进行评估。
数据的成本和数据价值的评估维度主要和自己的应用场景和业务需求挂钩即可。数据成本与数据价值典型评价方法包括成本法、收益法和市场化。
8、数据共享管理,包括数据内部共享、外部流通、对外开放。数据共享管理的关键活动就是包括定义数据资产运营指标、设计管理方案等。
㈡ 对数据资产进行体全面盘点、构建企业级的数据资产目录
随着云计算、物联网、移动互联网等新技术的逐渐成熟和集中应用,社会发展进入了数字化时代,人、事、物都在被数据化,数据已成为新经济的核心生产要素,日益对全球生产、流通、分配、消费活动以及经济运行机制、社会生活方式和国家治理能力产生重要影响。
越来越多的企业也将数据视为转型发展、重塑竞争优势和提升组织治理能力的重要战略资产,并对这一重要资产进行系统性、体系化的管理,以便充分挖掘数据的战略、战术价值。鉴于此,对数据资产进行体全面盘点、构建企业级的数据资产目录成为了数据资产管理的一项基础性工作,正在 各行各业如火如荼的开展。
而很多企业在构建数据资产目录的过程中,遇到了很多困惑和难题,仿佛走入了数据沼泽中、身心俱疲,例如:
● 要对哪些数据资产进行盘点、放到数据资产目录中?
● 谁来盘点最合适?谁是数据资产目录的使用者?
● 数据资产目录构建后,谁来管理?怎么管理?
● 花了大量的人力、物力、财力,难到只弄了一堆EXCEL清单出来?
● 好不容易梳理出来的目录,最后处于沉睡状态,没人关心、也没人用!
● 业务人员看不懂对数据资产的解释!
● ……
数据资产的基本涵义
在理论层面,目前并没有对数据资产的权威定义。我们选取业界较为认可的概念,即:数据资产( Data Asset )是指由企业拥有或者控制的,能够为企业带来未来经济利益的,以物理或电子的方式记录的数据资源,如文件资料、电子数据等。在企业中,并非所有的数据都构成数据资产,数据资产是能够为企业产生价值的数据资源。
从以上概念中,可以得出数据资产最重要的三个性质:
(1) 可控的 ,企业除了拥有自己内部的数据外,对一些外部的数据可以通过可靠、合法的途径获取,也可作为企业数据资产的一部分;
(2) 有价值的 ,数据资产能够给企业带来效益和价值,但笔者认为此处的效益不应局限在经济价值,还会有社会价值、信誉和品牌价值等等;
(3) 需要甄别的 ,并非所有的数据都能成为数据资产,所以企业要根据自身业务特点,在海量的数据中识别划分出属于自己的核心数据资产。
数据资产目录的价值
目前,数据资产目录管理已经变成了数据治理工作中不可或缺的一个环节。企业在识别出自身数据资产的基础上,进一步构建数据资产目录,能够帮助用户更好的理解、使用以及分析数据。
企业通过发现、描述和组织数据资产,形成一套企业数据资产的清单目录,提供一套上下文背景信息,为数据分析师、数据架构师、数据管理专员和其他数据用户,根据业务价值目标更好的查找和理解相关的数据资产。
如何实践数据资产管理
数据作为越来越重要的生产要素,将成为比土地、石油、煤矿等更为核心的生产资源,如何加工利用数据,释放数据价值,实现企业的数字化转型,是各行业和企业面临的重要课题,然而数据的价值发挥面临重重困难。企业的数据资源散落在多个业务系统中,企业主和业务人员无法及时感知到数据的分布与更新情况,也无法进一步开展对数据加工工作。数据标准不统一,数据孤岛普遍存在导致业务系统之间的数据无法共享,资源利用率降低,降低了数据的可得性。标准缺失、数据录入不规范导致数据质量差,垃圾数据增多,数据不可用。数据安全意识不够、安全防护不足导致了数据泄露事件频发,危害了企业经营和用户利益。为了解决解决数据面临的诸多问题,充分释放数据价值。
我给大家推荐一款非常好用的数据资产管理工具——睿治。睿治平台是目前国内功能最全的数据治理产品,完全覆盖了元数据、数据标准、数据质量、数据集成、主数据、数据资产、数据交换、生命周期、数据安全9大领域。并且采用微服务架构,既可以和企业已建系统高度融合,也可以随着未来信息化发展,而无限延展。也实现了全角色的可视化,包括领导、技术管理、业务管理、都能通过平台清晰的了解数据治理的过程和结果,从而保证数据治理的落地,产生积极的推动作用。