① “大数据”是什么意思请举例说明。
大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。例如:洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生;google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布;统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。
大数据理论:
1、理论是认知的必经途径,也是被广泛认同和传播的基线。在这里从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。
2、技术是大数据价值体现的手段和前进的基石。在这里分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。
3、实践是大数据的最终价值体现。在这里分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。
② 什么是“大数据”,如何理解“大数据”
你好,大数据是指巨量的数据,指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。
当下,大数据技术作为新兴技术被许多互联网大厂所需,以华为为例。
1、华为云推出大数据稽核方案解决偷逃费
很多朋友可能发现,部分省界收费站变少而ETC通道在增加,高速公路的出行体验比以前更加顺畅。然而,在公众体验节省费用、便捷通行等利好的同时,高速公路的管理运营单位却饱受新情况的困扰。
部分车主偷逃费方式多样化,包括换卡逃费、车头挂车分离逃费、倒换电子标签、ETC车道跟车逃费等。同时偷逃费行为向专业化、团伙化演变,给高速运营单位带来大量经济损失和严峻挑战。
以华为为例,华为给1-3年经验的大数据开发工程师开到了高达4万的月薪,在其他大厂的招聘中30k-60k的大数据开发工程师,也只要1-3年工作经验,可以说大数据、云计算仍是当下的红利岗位。
希望我的回答对你有所帮助!
③ “大数据”是什么意思请举例说明。
大数据指无法在一定时间范围内用常规软件工 具进行捕捉、管理和处理的数据集合,是需要新处理模式
才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据历史和当前考虑因素
虽然术语“大数据"相对较新,但收集和存储大量信息以进行最终分析的行为已经很久了。这个概念在
21世纪初获得了动力,当时行业分析师Doug Laney将现在主流的大数据定义表达为三个V :
1.卷,组织从各种来源收集数据,包括业务交易,社交媒体和来自传感器或机器到机器数据的信息。在过
去,存储它将是-一个问题-但新技术(如Hadoop)减轻了负担。
2.速度,数据以前所未有的速度流入,必须及时处理。RFID 标签,传感器和智能电表正在推动近乎实时
处理数据的需求。
3.品种,数据有各种格式-从传统数据库中的结构化数字数据到非结构化文本文档,电子邮件,视频,
音频,股票报价数据和金融交易。
④ 大数据是什么意思举例说明
大数据一般是用在应用领域,通过数据趋势,或者数据透明化,为决策做参考。
举个例子,现在国家允许公开企业信息,比如企业有没有偷税、漏税,有没有合同纠纷,通过大数据平台都可以查询到,还可以知道企业的历史信用等情况,这些就是大数据可以给普通企业、老百姓的帮助。再比如现在很多以前要在柜台办理的业务,线上就解决了,这都是在通过大数据的应用,惠及到老百姓的事情。
⑤ 有谁知道大数据指的是什么
大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。(在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据的方法[2])大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
说起大数据,就要说到商业智能:
商业智能(Business Intelligence,简称:BI),又称商业智慧或商务智能,指用现代数据仓库技术、线上分析处理技术、数据挖掘和数据展现技术进行数据分析以实现商业价值。
商业智能作为一个工具,是用来处理企业中现有数据,并将其转换成知识、分析和结论,辅助业务或者决策者做出正确且明智的决定。是帮助企业更好地利用数据提高决策质量的技术,包含了从数据仓库到分析型系统等。
商务智能的产生发展
商业智能的概念经由Howard Dresner(1989年)的通俗化而被人们广泛了解。当时将商业智能定义为一类由数据仓库(或数据集市)、查询报表、数据分析、数据挖掘、数据备份和恢复等部分组成的、以帮助企业决策为目的技术及其应用。
商务智能是20世纪90年代末首先在国外企业界出现的一个术语,其代表为提高企业运营性能而采用的一系列方法、技术和软件。它把先进的信息技术应用到整个企业,不仅为企业提供信息获取能力,而且通过对信息的开发,将其转变为企业的竞争优势,也有人称之为混沌世界中的智能。因此,越来越多的企业提出他们对BI的需求,把BI作为一种帮助企业达到经营目标的一种有效手段。
目前,商业智能通常被理解为将企业中现有的数据转化为知识,帮助企业做出明智的业务经营决策的工具。这里所谈的数据包括来自企业业务系统的订单、库存、交易账目、客户和供应商资料及来自企业所处行业和竞争对手的数据,以及来自企业所处的其他外部环境中的各种数据。而商业智能能够辅助的业务经营决策既可以是作业层的,也可以是管理层和策略层的决策。
为了将数据转化为知识,需要利用数据仓库、线上分析处理(OLAP)工具和数据挖掘等技术。因此,从技术层面上讲,商业智能不是什么新技术,它只是ETL、数据仓库、OLAP、数据挖掘、数据展现等技术的综合运用。
把商业智能看成是一种解决方案应该比较恰当。商业智能的关键是从许多来自不同的企业运作系统的数据中提取出有用的数据并进行清理,以保证数据的正确性,然后经过抽取(Extraction)、转换(Transformation)和装载(Load),即ETL过程,合并到一个企业级的数据仓库里,从而得到企业数据的一个全局视图,在此基础上利用合适的查询和分析工具、数据挖掘工具、OLAP工具等对其进行分析和处理(这时信息变为辅助决策的知识),最后将知识呈现给管理者,为管理者的决策过程提供支持。
企业导入BI的优点
1.随机查询动态报表
2.掌握指标管理
3.随时线上分析处理
4.视觉化之企业仪表版
5.协助预测规划
导入BI的目的
1.促进企业决策流程(Facilitate the Business Decision-Making Process):BIS增进企业的资讯整合与资讯分析的能力,汇总公司内、外部的资料,整合成有效的决策资讯,让企业经理人大幅增进决策效率与改善决策品质。
2.降低整体营运成本(Power the Bottom Line):BIS改善企业的资讯取得能力,大幅降低IT人员撰写程式、Poweruser制作报表的时间与人力成本,而弹性的模组设计接口,完全不需撰写程式的特色也让日后的维护成本大幅降低。
3.协同组织目标与行动(Achieve a Fully Coordinated Organization):BIS加强企业的资讯传播能力,消除资讯需求者与IT人员之间的认知差距,并可让更多人获得更有意义的资讯。全面改善企业之体质,使组织内的每个人目标一致、齐心协力。
商业智能领域的技术应用
商业智能的技术体系主要有数据仓库(Data Warehouse,DW)、联机分析处理(OLAP)以及数据挖掘(Data Mining,DM)三部分组成。
数据仓库是商业智能的基础,许多基本报表可以由此生成,但它更大的用处是作为进一步分析的数据源。所谓数据仓库(DW)就是面向主题的、集成的、稳定的、不同时间的数据集合,用以支持经营管理中的决策制定过程。多维分析和数据挖掘是最常听到的例子,数据仓库能供给它们所需要的、整齐一致的数据。
在线分析处理(OLAP)技术则帮助分析人员、管理人员从多种角度把从原始数据中转化出来、能够真正为用户所理解的、并真实反映数据维特性的信息,进行快速、一致、交互地访问,从而获得对数据的更深入了解的一类软件技术。
数据挖掘(DM)是一种决策支持过程,它主要基于AI、机器学习、统计学等技术,高度自动化地分析企业原有的数据,做出归纳性的推理,从中挖掘出潜在的模式,预测客户的行为,帮助企业的决策者调整市场策略,减少风险,做出正确的决策。
商业智能的应用范围
1.采购管理
2.财务管理
3.人力资源管理
4.客户服务
5.配销管理
6.生产管理
7.销售管理
8.行销管理
商业智能实施步骤
商业智能系统处理流程[1]
商业智能(BI)作为一个概念,描述与业务紧密结合,并且根据需要进行相关特性展示和数据处理的过程。
为了让数据“活”起来,往往需要利用数据仓库、数据挖掘、报表设计与展示、联机在线分析(OLAP)等技术。数据或者数据源包含的种类繁多,例如存储在关系型数据库中的,在外围数据文件中的,在业务流中实时产生存储在内存中的等等。而商业智能最终能够辅助的业务经营决策,既可以是操作层的,也可以是战术层和战略层的决策。
这些分析有财务管理、点击流分析(Clickstream)、供应链管理、关键绩效指标(Key Performance Indicators, KPI)、客户分析等。商业智能关注的是,从各种渠道(软件,系统,人,等等)发掘可执行的战略信息。商业智能用的工具有抽取(Extraction)、转换(Transformation)和加载(Load)软件(搜集数据,建立标准的数据结构,然后把这些数据存在另外的数据库中)、数据挖掘和在线分析(Online Analytical Processing,允许用户容易地从多个角度选取和察看数据)等 。
商业智能系统的功能
商业智能系统应具有的主要功能:
数据仓库:高效的数据存储和访问方式。提供结构化和非结构化的数据存储,容量大,运行稳定,维护成本低,支持元数据管理,支持多种结构,例如中心式数据仓库,分布式数据仓库等。存储介质能够支持近线式和二级存储器。能够很好的支持现阶段容灾和备份方案。
数据ETL:数据ETL支持多平台、多数据存储格式(多数据源,多格式数据文件,多维数据库等)的数据组织,要求能自动化根据描述或者规则进行数据查找和理解。减少海量、复杂数据与全局决策数据之间的差距。帮助形成支撑决策要求的参考内容。
数据统计输出(报表):报表能快速的完成数据统计的设计和展示,其中包括了统计数据表样式和统计图展示,可以很好的输出给其他应用程序或者Html形式表现和保存。对于自定义设计部分要提供简单易用的设计方案,支持灵活的数据填报和针对非技术人员设计的解决方案。能自动化完成输出内容的发布。
分析功能:可以通过业务规则形成分析内容,并且展示样式丰富,具有一定的交互要求,例如预警或者趋势分析等。要支持多维度的联机在线分析(OLAP分析),实现维度变化、旋转、数据切片和数据钻取等。帮助决策做出正确的判断。
典型的商业智能系统
典型的商业智能系统有:
客户分析系统、菜篮分析系统、反洗钱系统、反诈骗系统、客户联络分析系统、市场细分系统、信用计分系统、产品收益系统、库存运作系统以及与商业风险相关的应用系统等。
[编辑]商业智能解决方案厂商
提供商业智能解决方案的着名IT厂商包括微软、IBM、Oracle、Microstrategy、Business Objects、Cognos、SAS等
最后,希望你关注一下FineBI,帆软软件的大数据解决方案,我看了,还是很不错的
⑥ 什么数据可以称为大数据 常说的大数据是什么
1、大数据(big data),IT行业术语,是指无法在一定时老缓间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
2、大数据是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。侍闷模
3、大数据技术的战略意义罩缓不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
⑦ 大数据包括什么
什么是大数据?
列举三个常用的大数据定义:
(1)具有较强决策、洞察和流程优化能力的海量、高增长、多样化的信息资产需要新的处理模式。
——Gartner
(2)海量数据量、快速数据流和动态数据速度、多样的数据类型和巨大的数据价值。和兆
—— IDC
(3)或者是海量数据、海量数据、大数据,是指所涉及的数据太大,无法在合理的时间内被截取、管理、处理、整理成人类可以解读的信息。
—— Wiki
大数据的其他定义也差不多,可以用几个关键词来慎哪定义大数据。
首先是“大尺度”,可以从两个维度来衡量,一是从时间序列中积累大量数据,二是对数据进行深度提炼。
其次,“多样化”可以是不同的数据格式,比如文字、图片、视频等。,可以是不同的数据类别,如人口数据、经济数据等。,也可以有不同的数据源,如互联网和传感器等。
第三,“动态”。数据是不断变化的,它可以随着时间迅速增加大量的数据,也可以是在空间不断移动变化的数据。
这三个关键词定义了大数据的形象。
但是,需要一个关键能力,就是“处理速度快”。如果有这样的大规模、多样化、动态的数据,但是需要很长时间的处理和分析,那就不叫大数据。从另一个角度来说,要实现这些数据的快速处理,肯定没有宽棚码办法手工实现,所以需要借助机器来实现。
⑧ 什么是大数据,大数据的典型案例有哪些
随着大数据时代的到来,大数据早已被逐步的运用在我们生活中的方方面面,那么除了之前众所周知的大数据杀熟事件,对于大数据你还了解多少呢?科学运用案例你又知道多少?今天就跟随千锋小编一起来看看。
洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。
google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。
统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。
麻省理工学院利用手机定位数据和交通数据建立城市规划。
梅西百货的实时定价机制,根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
……
种种的案例实在是太多,或许我们永远说不完一样,所以我们就来看一看大数据被科学运用的一个经典案例:
“啤酒与尿布”的故事产生于20世纪90年代的美国沃尔玛超市中,沃尔玛的超市管理人员分析销售数据时发现了一个令人难于理解的现象:在某些特定的情况下,“啤酒”与“尿布”两件看上去毫无关系的商品会经常出现在同一个购物篮中,这种独特的销售现象引起了管理人员的注意,经过后续调查发现,这种现象出现在年轻的父亲身上。
如果这个年轻的父亲在卖场只能买到两件商品之一,则他很有可能会放弃购物而到另一家商店,直到可以一次同时买到啤酒与尿布为止。沃尔玛发现了这一独特的现象,开始在卖场尝试将啤酒与尿布摆放在相同的区域,让年轻的父亲可以同时找到这两件商品,并很快地完成购物;而沃尔玛超市也可以让这些客户一次购买两件商品、而不是一件,从而获得了很好的商品销售收入,这就是“啤酒与尿布” 故事的由来。
当然“啤酒与尿布”的故事必须具有技术方面的支持。1993年美国学者Agrawal提出通过分析购物篮中的商品集合,从而找出商品之间关联关系的关联算法,并根据商品之间的关系,找出客户的购买行为。艾格拉沃从数学及计算机算法角度提 出了商品关联关系的计算方法——Aprior算法。沃尔玛从上个世纪 90 年代尝试将 Aprior 算法引入到 POS机数据分析中,并获得了成功,于是产生了“啤酒与尿布”的故事。
其实大数据,其影响除了以上列举的方面外,它同时也能在经济、政治、文化等方面产生深远的影响,大数据可以帮助人们开启循“数”管理的模式,也是我们当下“大社会”的集中体现,三分技术,七分数据,得数据者得天下。
⑨ 大数据时代,几个例子告诉你什么叫大数据
例子:比如,阿里每天都在收集每一个淘宝用户的各个方面的信息参考(千人千面)。然后再用大数据算法来推荐给你现在需要的产品,或者广告,这个就是大数据。我说的是最浅显的一种大数据。 大数据就没有隐私,手机里的APP都回收集你的一切的数据,一切的数据,这样呢,你在淘宝上看了看一款手机,那么当你关了淘宝,打开了今日头条,你如果注意的话,你会发现,头条今日推荐你的广告就是手机,文章内容也会偏向手机之内的。这就是大数据。
所谓大数据无非就是一大堆数据。
小的 1、2 G,多的上千、上万 G
用户行为
用户习惯
怎么才能从用户身上赚到钱。