Ⅰ 大数据分析会遇到哪些问题
1.很难获得用户操作行为完整日志
现阶段数据剖析以统计为主,如用户量、使用时间点时长和使用频率等。一是需求辨认用户,二是记录行为简单引起程序运转速度,三是开发本钱较高。
2.产品缺少中心方针
这需求剖析人员满足的了解产品。产品有了中心方针,拆分用户操作使命和目的,剖析才会有目的,不然拿到一堆数据不知如何下手。比方讲输入法的中心方针设为每分钟输入频率,顺着这个方针能够剖析出哪些因素正向影响(如按键简单点击)和反向影响(如模糊音、误点击和点击退格键的次数)中心方针。
3.短期内或许难以发挥作用
数据剖析需求不断的试错,很难在短期内证明方法的有效性,或许难以获得其他人物的支撑。
4.将剖析转化为有指导意义的结论或许设计
看过某使用的近四十个设置项的使用比例,修改皮肤使用率较高,而单个选项使用率不到0.1%,依次数据能够调整设置项的层级联系,重要的选项放置到一级着重显现,低于5%的能够放置二三级。
5.清晰用户操作目的
功能关于用户而言,使用率不是越高越好。添加达到的方针的途径,用户考虑本钱添加,操作次数会添加,比方查找。在使用中使用查找或许阐明用户没有通过浏览找到想要的内容,假如用户查找热门内容,阐明使用展示信息的方法出现问题。
6.考虑到运营需求
之前做过的工具型使用,设计的中心方针是进步操作效率,削减点击次数、等待时间和手指位移等,最快的时间完成操作。而一些浏览型产品用户的目的并不清晰,大致有浏览、查询、对比和确认方针等四类用户行为,需求兼容用户方针不清晰情况下操作,引导用户选择的一起还要在过程中展示更多的内容,刺激用户点击。
关于大数据分析会遇到哪些问题,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
Ⅱ 有哪些常见的数据分析错误
1、常见的数据分析错误——混淆相关性和因果关系
为每个数据科学家、相关性和因果错误事件,将导致成本,最好的例子是《魔鬼经济学》的分析相关因果关系错误导致伊利诺斯州学生的书,因为根据分析的书籍在学校学生可以直接接受更高的测试。进一步的分析表明,家里有几本书的学生在学业上表现更好,即使他们从来没有读过这些书。
这改变了父母经常买书的家庭可以创造一个愉快的学习环境的假设和看法。
大多数数据科学家在处理大数据时都假设相关性直接影响因果关系。使用大数据来理解两个变量之间的相关性通常是个好主意,但一直使用“因果”类比可能导致错误的预测和无效的决策。为了更好地利用大数据,数据科学家必须理解关系和根源之间的区别。相关性通常是指同时观察X和Y的变化,而cause ation则是指X引起Y。在数据科学中,这是两件非常不同的事情,但是很多数据科学家往往忽略了这一差异。基于相关性的决策可能足以采取行动,我们不需要知道为什么,但这完全取决于数据的类型和要解决的问题。
每个数据科学家都必须明白,在数据科学中,相关性不是因果关系。如果两种关系相互关联,并不意味着一种关系会导致另一种关系。
2、常见的数据分析错误——没有选择正确的视觉工具
大多数数据科学家专注于分析的技术层面。他们无法通过使用允许他们更快地理解数据的不同可视化技术来理解数据。如果数据科学家不能选择正确的视觉发展模型来监控探索性数据分析和性能结果,即使是最好的机器学习模型的价值也会被稀释。事实上,许多数据科学家选择图表类型是基于他们的审美偏好,而不是数据集的特征。这可以通过定义视觉目标来避免。
即使数据科学家开发出了最好、最好的机器学习模型,它也不会喊出“Eureka”——它所需要的只是有效地将结果可视化,理解数据模式的差异,并意识到它的存在可以应用于商业结果。俗话说:“一图胜千言。”数据科学家不仅需要熟悉他们常用的数据可视化工具,还需要了解数据可视化是如何工作的,并以引人注目的方式获得结果。
解决任何数据科学问题的一个关键步骤是深入理解数据是关于什么的,并通过丰富的可视化表示,从而形成相应的分析和建模的基础。
3、常见的数据分析错误——未能选择适当的模型验证周期
科学家们认为,建立一个成功的机器学习模型是最成功的。但这只是成功的一半。它必须确保模型的预测有效。许多数据科学家往往忘记或忽略了他们的数据必须在特定的时间间隔反复验证这一事实。数据科学家经常犯的一个常见错误是假设预测模型是理想的,如果它们符合观测数据。当模型之间的关系发生变化时,所建立模型的预测效果会瞬间消失。为了避免这种情况,数据科学家的最佳解决方案是用新数据每小时评估数据模型,或者评估基于模型的关系逐日逐月变化的速度。
由于各种因素的影响,模型的预测能力往往会减弱,因此数据科学家需要确定一个常数,以确保模型的预测能力不会低于可接受的水平。在某些情况下,数据科学家可以重构数据模型。最好是建立多个模型和解释变量的分布,而不是考虑单一的模型。
为了保持所建立模型的预测效果和有效性,选择一个迭代周期很重要,否则可能会导致不正确的结果。
常见的数据分析错误有哪些?作为数据分析师别说你没犯过,数据分析师有一个宝库。作为滴滴出行数据分析团队的负责人,刘发现了数据分析师制胜的秘诀:远见。数据分析提供了一种可能性,你能处理好吗?如果您还担心自己入门不顺利,可以点击本文其他文章进行学习。
Ⅲ 数据分析师面试常见问题有哪些
1、如何理解过拟合?
过拟合和欠拟合一样,都是数据挖掘的基本概念。过拟合指的就是数据训练得太好,在实际的测试环境中可能会产生错误,所以适当的剪枝对数据挖掘算法来说也是很重要的。
欠拟合则是指机器学习得不充分,数据样本太少,不足以让机器形成自我认知。
2、为什么说朴素贝叶斯是“朴素”的?
朴素贝叶斯是一种简单但极为强大的预测建模算法。之所辩哪以称为朴素贝叶斯,是因为它假设每个输入变量是独立的。这是一个强硬的假设,实际情况并不一定,但是这项技术对于绝大部分的复杂问题仍然非常有效。
3、SVM 最重要的思想是什么?
SVM 计算的过程就是帮我们找到超平面的过程,它有个核心轮灶乱的概念叫:分类间隔。SVM 的目标就是找出所有分类间隔中最大的那个值对应的超平面。在数学上,这是一个凸优化问题。同样我们根据数据是否线性可分,把 SVM 分成硬间隔 SVM、软间隔 SVM 和非线性 SVM。
4、K-Means 和 KNN 算法的区别是什么?
首先,这两个算法解决的是数据挖掘中的两类问题。K-Means 是聚类算法,KNN 是分类算法。其次,这两个算法分别是两种不同的学习腊档方式。K-Means 是非监督学习,也就是不需要事先给出分类标签,而 KNN 是有监督学习,需要我们给出训练数据的分类标识。最后,K 值的含义不同。K-Means 中的 K 值代表 K 类。KNN 中的 K 值代表 K 个最接近的邻居。
Ⅳ 数据分析师常见的面试问题
关于数据分析师常见的面试问题集锦
1、你处理过的最大的伏汪隐数据量?你是如何处理他们的?处理的结果。
2、告诉我二个分析或者计算机科学相关项目?你是如何对其结果进行衡量的?
3、什么是:提升值、关键绩效指标、强壮性、模型按合度、实验设计、2/8原则?
4、什么是:协同过滤、n-grams, map rece、余弦距离?
5、如何让一个网络爬虫速度更快、抽取更好的信息以及更好总结数据从而得到一干净的数据库?
6、如何设计一个解决抄袭的方案?
7、如何检验一个个人支付账户都多个人使用?
8、点击流数据应该是实时处理?为什么?哪部分应该实时处理?
9、你认为哪个更好:是好的数据还是好模型?同时你是如何定义“好”?存在所有情况下通用的模型吗?有你没有知道一些模型的定义并不是那么好?
10、什么是概率合并(aka模糊融合)?使用sql处理还是其它语言方便?对于处理半结构化的数据你会选择使用哪种语言?
11、你是如何处理缺少数据的?你推荐使用什么样的处理技术?
12、你最喜欢的编程语言是什么?为什么?
13、对于你喜欢的统计软件告诉你喜欢的与不喜欢的3个理由。
14、sas, r, python, perl语言的区别是?
15、什么是大数据的诅咒?
16、你参与过数据库与数据模型的设计吗?
17、你是否参与过仪表盘的设计及指标选择?你对于商业智能和报表工具有什么想法?
18、你喜欢td数据库的什么特征?
19、如何你打算发100万的营销活动邮件。你怎么去优化发送?你怎么优化反应率?能把这二个优化份开吗?
20、如果有几个客户查询oracle数据库的效率很低。为什么?你做什么可以提高速度10倍以上,同时可以更好处理大数量输出?
21、如何把非结构化的数据转换成结构化的数据?这是否真的有必要做这样的转换?把数据存成平面文本文件是否比存成关系数据库更好?
22、什么是哈希表碰撞攻击?怎么避免?发生的频率是多少?
23、如何判别maprece过程有好的负载均衡?什么是负载均衡?
24、请举例说明maprece是如何工作的?在什么应用场景下工作的很好?云的安全问题有哪些?
25、(在内存满足的情况下)你认为是100个小的哈希表好还是一个大的哈希表,对于内在或者运行速度来说?对于数据库分析的评价?
26、为什么朴素贝叶斯差?你如何使用朴素贝叶斯缺厅来改进爬虫检验算法?
27、你处理过白名单吗?主要的规则?(在欺诈或者爬行检验的情况下)
28、什么是星型模型?什么是查询表?
29、你可以使用excel建立逻辑回归模型吗?如何可以,说明一下建立过程?
30、在sql, perl, c++, python等编程过程上,待为了提升速度优化过相关代码或者算法吗?如何及提升多少?
31、使用5天完成90%的精度的解决方案还是花10天完成100%的精度的解决方案?取决于什么内容?
32、定义:qa(质量保障)、六西格玛、实验设计。好的与坏的实验设计能否举个案例?
33、普通线性回归模型的缺陷是什么陵唤?你知道的其它回归模型吗?
34、你认为叶数小于50的决策树是否比大的好?为什么?
35、保险精算是否是统计学的一个分支?如果不是,为何如何?
36、给出一个不符合高斯分布与不符合对数正态分布的数据案例。给出一个分布非常混乱的数案例。
37、为什么说均方误差不是一个衡量模型的好指标?你建议用哪个指标替代?
38、你如何证明你带来的算法改进是真的有效的与不做任何改变相比?你对a/b测试熟吗?
39、什么是敏感性分析?拥有更低的敏感性(也就是说更好的强壮性)和低的预测能力还是正好相反好?你如何使用交叉验证?你对于在数据集中插入噪声数据从而来检验模型的.敏感性的想法如何看?
40、对于一下逻辑回归、决策树、神经网络。在过去XX年中这些技术做了哪些大的改进?
41、除了主成分分析外你还使用其它数据降维技术吗?你怎么想逐步回归?你熟悉的逐步回归技术有哪些?什么时候完整的数据要比降维的数据或者样本好?
42、你如何建议一个非参数置信区间?
43、你熟悉极值理论、蒙特卡罗逻辑或者其它数理统计方法以正确的评估一个稀疏事件的发生概率?
44、什么是归因分析?如何识别归因与相关系数?举例。
45、如何定义与衡量一个指标的预测能力?
46、如何为欺诈检验得分技术发现最好的规则集?你如何处理规则冗余、规则发现和二者的本质问题?一个规则集的近似解决方案是否可行?如何寻找一个可行的近似方案?你如何决定这个解决方案足够好从而可以停止寻找另一个更好的?
47、如何创建一个关键字分类?
48、什么是僵尸网络?如何进行检测?
49、你有使用过api接口的经验吗?什么样的api?是谷歌还是亚马逊还是软件即时服务?
50、什么时候自己编号代码比使用数据科学者开发好的软件包更好?
51、可视化使用什么工具?在作图方面,你如何评价tableau?r?sas?在一个图中有效展现五个维度?
52、什么是概念验证?
53、你主要与什么样的客户共事:内部、外部、销售部门/财务部门/市场部门/it部门的人?有咨询经验吗?与供应商打过交道,包括供应商选择与测试。
54、你熟悉软件生命周期吗?及it项目的生命周期,从收入需求到项目维护?
55、什么是cron任务?
56、你是一个独身的编码人员?还是一个开发人员?或者是一个设计人员?
57、是假阳性好还是假阴性好?
58、你熟悉价格优化、价格弹性、存货管理、竞争智能吗?分别给案例。
59、zillow’s算法是如何工作的?
60、如何检验为了不好的目的还进行的虚假评论或者虚假的fb帐户?
61、你如何创建一个新的匿名数字帐户?
62、你有没有想过自己创业?是什么样的想法?
63、你认为帐号与密码输入的登录框会消失吗?它将会被什么替代?
64、你用过时间序列模型吗?时滞的相关性?相关图?光谱分析?信号处理与过滤技术?在什么样的场景下?
65、哪位数据科学有你最佩服?从哪开始?
66、你是怎么开始对数据科学感兴趣的?
67、什么是效率曲线?他们的缺陷是什么,你如何克服这些缺陷?
68、什么是推荐引擎?它是如何工作的?
69、什么是精密测试?如何及什么时候模拟可以帮忙我们不使用精密测试?
70、你认为怎么才能成为一个好的数据科学家?
71、你认为数据科学家是一个艺术家还是科学家?
72、什么是一个好的、快速的聚类算法的的计算复杂度?什么好的聚类算法?你怎么决定一个聚类的聚数?
73、给出一些在数据科学中“最佳实践的案例”。
74、什么让一个图形使人产生误解、很难去读懂或者解释?一个有用的图形的特征?
75、你知道使用在统计或者计算科学中的“经验法则”吗?或者在商业分析中。
76、你觉得下一个20年最好的5个预测方法是?
77、你怎么马上就知道在一篇文章中(比如报纸)发表的统计数字是错误,或者是用作支撑作者的论点,而不是仅仅在罗列某个事物的信息?例如,对于每月官方定期在媒体公开发布的失业统计数据,你有什么感想?怎样可以让这些数据更加准确?
;Ⅳ 分析数据时需要注意哪些问题
1、没有明确分析数据的目的
当我们要分析一份数据时,首先要确定好自己的目的,为什么要收集和分析这样一份数据,而只有明确了目的之后,这样才能够了解自己接下来要收集哪些数据,应该怎么收集数据,应该分析哪些数据等。
2、没有合理安排时间
数据分析也要合理安排时间,一般我们有几个步骤,收集数据>>整理数据>>分析数据>>美化表格,在做这些之前,我们要预估一下每一个步骤需要花多少时间,哪一步比较重要,需要花更多的时间等,这些都要在开始收集数据前就计划好,然后在操作的过程中在规定的时间里完成每一个步骤。
3、重收集轻分析
培训里有不少同学就犯了这样的一个错误,做任务的时间为3个星期,却用了两个多星期来收集数据,最后基本没有时间去分析,紧赶慢赶最后交上来一份没有怎么分析的数据。数据分析重点应该在于分析,应该以最快的速度收集完数据,才有更多的时间整理和分析,最后经过分析的数据才是最有价值的。
4、收集数据太多,导致无法整理及分析
在我们开始收集数据的时候,容易犯的一个毛病就是看到什么内容比较符合的就都收集下来,这样的情况是数据越来越多,表格里文档里的内容越来越多,到最后一看,自己都晕了,该怎么整理和分析啊!其实我们在收集数据的时候也要有一个标准,什么样的数据是我们需要的,什么数据是不符合条件的,作一个初步的判断,这样就可以减少后面整理的更多工作量了。
关于分析数据时需要注意哪几点,青藤小编今天就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
以上是小编为大家分享的关于分析数据时需要注意哪些问题?的相关内容,更多信息可以关注环球青藤分享更多干货
Ⅵ 数据分析常见的犯错问题有哪些
1、分析目标不明确
“海量的数据其实并不能产生海量的财富”,许多数据分析人员由于没有制定清晰的分析目标,常常在海量数据中混乱,要么是收集了错误的数据,要么收集的数据不够完整,这会导致数据分析的结果不够准确。
2、收集数据时产生误差
当我们捕获数据的软件或硬件出错时,就会出现一定的误差。例如,使用日志与服务器不同步,则可能丢失移动应用程序上的用户行为信息。同样,如果我们使用像麦克风这样的硬件传感器,我们的录音可能会捕捉到背景噪音或其他电信号的干扰。
3、样本缺乏代表性
在进行数据分析时,一定要有可信的数据样本,这是确保数据分析结果靠不靠谱的关键,如果数据样本不具代表性,终分析的结果也就没有价值。因此,对于数据样本,也要求完整和全面,用单一的、不具代表性的数据来代替全部数据进行分析,这种片面的数据得到的分析结果有可能完全是错误的。
4、相关关系和因果关系混乱
大部分的数据分析人员在处理大数据时假设相关关系直接影响因果关系。使用大数据来理解两个变量之间的相关性通常是一个很好的实践方法,但是,总是使用“因果”类比可能导致虚假的预测和无效的决定。要想实现数据分析的好效果,必须理解相关关系和因果关系两者的根本区别。相关关系往往是指同时观察X和Y的变化,而因果关系意味着X导致Y。在数据分析中,这是两个完全不同的事情,但是许多数据分析人员往往忽视了它们的区别。
5、脱离业务实际
一个专业的数据分析人员,必须非常熟悉所分析项目的行业情况、业务流程以及相关知识,因为数据分析的终结果是解决项目中存在的问题,或者给行业的决策者提供参考意见。如果不能很好地将业务知识和数据分析工作结合起来,脱离业务实际而只关心数据,在这种情况下得到的分析结果将不具有参考价值。
关于数据分析常见的犯错问题有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
Ⅶ 数据分析包括哪些内容
1.数据获取
数据获取看似简单,但是需要把握对问题的商业理解,转化成数据问题来解决,直白点讲就是需要哪些数据,从哪些角度来分析,界定问题后,再进行数据采集。此环节,需要数据分析师具备结构化的逻辑思维。
2.数据处理
数据的处理需要掌握有效率的工具:Excel基础、常用函数和公式、数据透视表、VBA程序开发等式必备的;其次是Oracle和SQL sever,这是企业大数据分析不可缺少的技能;还有Hadoop之类的分布式数据库,也要掌握。
3.分析数据
分析数据往往需要各类统计分析模型,如关联规则、聚类、分类、预测模型等等。SPSS、SAS、Python、R等工具,多多益善。
4.数据呈现
可视化工具,有开源的Tableau可用,也有一些商业BI软件,根据实际情况掌握即可。
Ⅷ 数据分析最容易犯的错误有哪些
①没有足够的数据团队呈现出来的数据也许有分析的价羡简值,然而细节也非常重要。从目前的企业用户分析中可以发现,不少企手派散业用户光了解总结数据,不去分析细节数据,这样往往会错过很多数据变化,甚至找不到真正左右消费者行为的原因,为企业判断带来错误参考。不仅如此,数据存储的少,还会会导致分析不全面。而实际上,无论是老企业用户还是初创业企业,数据的存储都是必须的,哪怕量很大,也不需要担心,因为现在的数据存储成本很低,完全不需要担心会增加企业支出负担。
②不了解数据的内在含义
不少公司用户认为,我招人来分析数据,就能得到自己想要的有价值的信息。然而,这些企业毕氏用户却忽视了很重要的一点,员工是否真正的了解数据的内在含义,是否会给企业带来积极影响。而在这种前提下,团队只会盲目的开发产品、盲目的执行,最终失败,却依然找不到自己失败的原因。
③数据存储时间短
一些企业为了节省空间和费用,会在一段时间之后将数据清零,输入新的数据,这样的做法看起来好像是企业赚了。实际上是企业赔了。因为对于企业来讲,数据是最大的参考资本。很多有价值的信息都来自数据分析,而数据分析并不是一段时间就结束的,它是一个长久的过程,在这个过程中,也许是很早之前的一小段信息,也许是当前的一点内容,都可能为企业带来翻天覆地的影响。
④过度总结
有不少企业用户,每隔一段时间就希望总结出一些内容,导致内容匮乏。也有不少企业用户记录的都是平均数值,却没有考虑每一分钟的销售是多少,影响是多大。这种表面的华丽看起来不错,但是真正的实用性并不大。
Ⅸ 数据分析包括哪些方面
1. Analytic Visualizations(可视化分析)不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。
2. Data Mining Algorithms(数据挖掘算法)可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。
3. Predictive Analytic Capabilities(预测性分析能力)数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。
4. Semantic Engines(语义引擎)我们知道由于非结构化数据的多样性带来了数据分析的新的挑战,我们需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从“文档”中智能提取信息。
5. Data Quality and Master Data Management(数据质量和数据管理)数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。
Ⅹ 数据分析能够解决哪些日常问题
如下:
1、可以解决成本与利润的问题,提高效率。
2、可以解决合理与公平的问题,数据说话。
3、可以解决目标与奖金的问题,合理安排。
目的:
数据分析的目的是把隐藏在一大批看来杂乱无章的数据中的信息集中和提炼出来,从而找出所研究对象的内在规律。在实际应用中,数据分析可帮助人们做出判断,以便采取适当行动。数据分析是有组织有目的地收集数据、分析数据,使之成为信息的过程。这一过程是质量管理体系的支持过程。
在产品的整个寿命周期,包括从市场调研到售后服务和最终处置的各个过程都需要适当运用数据分析过程,以提升有效性。例如设计人员在开始一个新的设计以前,要通过广泛的设计调查,分析所得数据以判定设计方向,因此数据分析在工业设计中具有极其重要的地位。