❶ 什么是数据分析
数据分析有:分类分析,矩阵分析,漏斗分析,相关分析,逻辑树分析,趋势分析,行为轨迹分析,等等。 我用HR的工作来举例,说明上面这些分析要怎么做,才能得出洞见。
01) 分类分析
比如分成不同部门、不同岗位层级、不同年龄段,来分析人才流失率。比如发现某个部门流失率特别高,那么就可以去分析。
02) 矩阵分析
比如公司有价值观和能力的考核,那么可以把考核结果做出矩阵图,能力强价值匹配的员工、能力强价值不匹配的员工、能力弱价值匹配的员工、能力弱价值不匹配的员工各占多少比例,从而发现公司的人才健康度。
03) 漏斗分析
比如记录招聘数据,投递简历、通过初筛、通过一面、通过二面、通过终面、接下Offer、成功入职、通过试用期,这就是一个完整的招聘漏斗,从数据中,可以看到哪个环节还可以优化。
04) 相关分析
比如公司各个分店的人才流失率差异较大,那么可以把各个分店的员工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、员工年龄、管理人员年龄等)要素进行相关性分析,找到最能够挽留员工的关键因素。
05) 逻辑树分析
比如近期发现员工的满意度有所降低,那么就进行拆解,满意度跟薪酬、福利、职业发展、工作氛围有关,然后薪酬分为基本薪资和奖金,这样层层拆解,找出满意度各个影响因素里面的变化因素,从而得出洞见。
06) 趋势分析
比如人才流失率过去12个月的变化趋势。
07)行为轨迹分析
比如跟踪一个销售人员的行为轨迹,从入职、到开始产生业绩、到业绩快速增长、到疲惫期、到逐渐稳定。
❷ 数据分析指的是什么
数据分析就是对数据进行分析。专业的说法,数据分析是指根据分析目的,用适当的统计分析方法及工具,对收集来的数据进行处理与分析,以求最大化地开发数据的功能,发挥数据的作用。数据也称观测值,是通过实验、测量、观察、调查等方式获取的结果,常常以数量的形式展现出来。
数据分析要达到帮助管理者有效决策提供有价值信息,比如日常通报、专题分析等,这些就是数据分析具体工作的体现。而什么时候做通报工作,什么时候开展专题分析,这都需要我们根据实际情况做出选择的。
数据分析的六种基本分析方法有:
1、构成分析法;2、同类比较分析法;3、漏斗法;4、相关分析法;5、聚类分析法;6、分组分析法。
构成分析在统计分组的基础上计算结构指标,来反映被研究总体构成情况的方法。应用构成分析法,可从不同角度研究投资构成及其变动趋势,观察投资构成与产业结构、社会需要构成的适应关系,可以揭示事物由量变到质变的具体过程。
❸ 什么是数据分析数据分析主要分为哪几个部分
简单说数据分析就是对数据进行分析。
专业的讲 数据分析是指用适用的统计分析方法对收集来的大量数据进行分析,将他们加以汇总理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析是为了提取有用的信息和形成结论而对数据加以详细研究和概括总结的过程。
六大部分:1.明确目的 2.收集数据 3.数据处理 4.数据分析 5.数据展现 6.报告撰写
❹ 请问单向重复测量方差分析和双向重复测量方差分析是什么意思
在多个不同的时点上从同一个受试对象(sub2ject) 重复获得指标的观察值; 或从同一个体
的不同部位(或组织) 上重复获得指标的观测值。最简单的重复测量设计是对每个变量
的水平前后测量两次, 计算变化值(试后数据轿亩- 试前数据) 或变化率(变化值/ 试前数
据) 。这种比较采用配对t 检验。这种设计符合毒理、药理、临床试验本身的特点, 尤其
是所需试验例数较少, 在医学研究领域中得到广泛的应用。如在药物非临床实验研究中
收集的时序关系的试验数据, 同一种药物不同剂型在不同时间的血药浓度, 病人在不同
时间对药物的生理反应等。在不同的剂量和时间中, 施以几种不同的药物, 这时液扒每组分
成三种因子: 药物、剂量、时间。通过对这些资料进行重复测量设计的方差分析[1 ] , 可
以了解药物的起效时间, 持续时间, 并对整个动态过程中不同剂量、药物药效的显着性
检验做出综合判断。是否可以这样理解,配对t检验是闹帆昌重复测量方差分析的最简单的形式,就好象独立样本t检验是单因素方差分析的最简单的形式?重复测量方差分析,有重复因素,比如时间、部位等。
http://..com/link?url=kLN7e_8_y2kmRYSREJeRvj_C7l0Te5l6TWAxmiFYiri--_PgLjSKNNgsBMw7qftK6NdwC
❺ 数据分析法指的是什么
数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。
数据分析常用方法
1、对比分析法,分析差异,揭示数据代表的事物的发展变化和规律性。
2、相关分析法,用来研究变量之间存在但又不确定的相互关系以及密切程度的分析,确定有无关系,确定现象之间关系的密切程度。
3、综合评价分析法,将多个指标转化为一个能够反映综合情况的指标进行评价,用于解决复杂的分析对象。
数据分析的基本思路
数据分析应该以业务场景为起始思考点,以业务决策作为终点。
1、明确思路
明确数据分析的目的以及思路是确保数据分析过程有效进行的首要条件。它作用的是可以为数据的收集、处理及分析提供清晰的指引方向。可以说思路是整个分析流程的起点。
首先目的不明确则会导致方向性的错误。当明确目的后,就要建分析框架,把分析目的分解成若干个不同的分析要点,即如何具体开展数据分析,需要从哪几个角度进行分析,采用哪些分析指标。只有明确了分析目的,分析框架才能跟着确定下来,最后还要确保分析框架的体系化,使分析更具有说服力。
2、收集数据
收集数据是按照确定的数据分析框架收集相关数据的过程,它为数据分析提供了素材和依据。
这里所说的数据包括第一手数据与第二手数据,第一手数据主要指可直接获取的数据比如公司自己的业务数据库中的业务数据,第二手数据主要指经过加工整理后得到的数据例如一些公开出版物或者第三方的数据网站。
3、处理数据
处理数据是指对收集到的数据进行加工整理,形成适合数据分析的样式,它是数据分析前必不可少的阶段。数据处理的基本目的是从大量的、杂乱无章、难以理解的数据中,抽取并推导出对解决问题有价值、有意义的数据。数据处理主要包括数据清洗、数据转化、数据提取、数据计算等处理方法。
4、分析数据
分析数据是指用适当的分析方法及工具,对处理过的数据进行分析,提取有价值的信息,形成有效结论的过程。由于数据分析多是通过软件来完成的,这就要求数据分析师不仅要掌握各种数据分析方法,还要熟悉数据分析软件的操作。
而数据挖掘其实是一种高级的数据分析方法,就是从大量的数据中挖掘出有用的信息,它是根据用户的特定要求,从浩如烟海的数据中找出所需的信息,以满足用户的特定需求。
5、可视化
一般情况下,数据是通过表格和图形的方式来呈现的,我们常说用图表说话就是这个意思。
常用的数据图表包括饼图、柱形图、条形图、折线图、散点图、雷达图等,当然可以对这些图表进一步整理加工,使之变为我们所需要的图形,例如金字塔图、矩阵图、漏斗图等。大多数情况下,人们更愿意接受图形这种数据展现方式,因为它能更加有效直观。
6、撰写报告
撰写数据分析报告其实是对整个数据分析过程的一个总结与呈现,通过清晰的结构和图文并茂的展现方式去展具有建设意义的解决方案。
❻ 什么是数据分析
数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。
数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。
数据分析目的:
数据分析的目的是把隐藏在一大批看来杂乱无章的数据中的信息集中和提炼出来,从而找出所研究对象的内在规律。在实际应用中,数据分析可帮助人们做出判断,以便采取适当行动。数据分析是有组织有目的地收集数据、分析数据,使之成为信息的过程。
这一过程是质量管理体系的支持过程。在产品的整个寿命周期,包括从市场调研到售后服务和最终处置的各个过程都需要适当运用数据分析过程,以提升有效性。例如设计人员在开始一个新的设计以前,要通过广泛的设计调查,分析所得数据以判定设计方向,因此数据分析在工业设计中具有极其重要的地位。
❼ 什么是数据分析如何学习数据分析
【导读】无论是从薪资待遇还是未来的发展前景,数据分析师都是屈指可数的稀缺人才,那么什么是数据分析?如何学习数据分析呢?下面跟着小编一起来分析一下吧!
什么是数据分析?
对于数据分析的概念,我们需要有一个深刻的理解。数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。
如何学习数据分析?
的确,兴趣能作为你学习下去的动力,但是后续不断地学习并掌握技能才是根本。小编以前特别喜欢吉他,于是就报了吉他班。弹吉他确实是一件很酷的事,但是学习过程却非常艰辛。我的手指尖经常因为弹吉他生成黄黄的老茧。有时候我甚至想要放弃,但是在老师和父母的监督下,我还是坚持了下来。
学习数据分析的过程何尝不是如此呢?想要实现梦想,就一定要付诸汗水。以下便是小编为小白们提的几点学习数据分析的建议~
1.浏览各大平台有关数据分析的论坛。
很多技术大牛在网络贴吧、知乎、B站、CSDN等平台都发布过自己的经验贴,积少成多的知识可以帮助我们少走很多弯路,从而更快地掌握知识。
2.运用数据集开启项目。
感兴趣的小伙伴可以点击下方链接康康小编推荐过的数据集~
3.掌握数据分析师的必备技能。
(1)Excel。很多人的电脑里都安装了Excel这款软件。在办公时,我们经常会用Excel制作表格。除此之外,Excel还是一款数据管理工具,可以用于数据的清理、分析和可视化。
(2)SQL。SQL是一种数据库查询和程序设计语言,用于存取数据以及查询、更新和管理关系数据库系统。
(3)Tableau等可视化软件。Tableau这一款可视化工具广泛运用于商业领域。并且,Tableau是一款自带教程的软件,省去了我们去别的平台找学习视频的时间。
以上就是小编今天给大家整理发送的关于“什么是数据分析?如何学习数据分析?”的相关内容,希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,这样更有核心竞争力与竞争资本。
❽ 双向式数据信息交流 是什么意思
看字前春同义,所谓双向式交流就是点对点交流,一个节点对一慧亮耐个节点的进行交流基本意思就是这样,区别于单键雀项信息交流,在联网中最常见的就是
对等网络
连接我说的不太清楚
❾ 双变量分析的作用
单变量分析是数据分析中最简单的形式,其中被分析的数据只包含一个变量。因为它是一个单一的变量,它不处理原因或关系。单变量分析的主要目的是描述数据并找出其中存在的模式。
可以将变量视为数据档伏所属的类别,比如单变量分析中,有一个变量是“年龄”,另一个变量是“高度”等,单因素分析就不能同时观察这两个变量,也不能看它们之间的关系。
单亮蠢腊变量数据中的发现模式有:查看平均值、模式、中位数、范围、方差、最大值、最小值、四分位数和标准偏差。此外,显示单变量数据的一些方法包括频率分布表、柱状图、直方图、频率多边形和饼状图。
使用双变量分析来找出两个不同变量之间是否存在关系,在笛卡尔平面上(想想X和Y轴)将一个变量对另一个变量进行绘图,从而创建散点图(.plot),这样简单的事情有时可以让你了解数据试图告诉你的内容,如果数据似乎符合直线或曲线,那么这两个变量之间存在关系或相关性。例如,人们可能会选择热量摄入与体重的关系。
多变量分析是对三个或更多变量的分析。根据你的目标,有多种方法可以执行多变量分析,这些方法中的一些包括添加树,典型相关分析,聚类分析,对应分析/多重对应敬滑分析,因子分析,广义Procrustean分析,MANOVA,多维尺度,多元回归分析,偏最小二乘回归,主成分分析/回归/ PARAFAC和冗余分析。