① 大数据怎么查
您好,目前除了人行征信和百行征信之外,还有很多的平台都是可以查询到个人段灶的大数据信用。可以直接上微信:提查查官方号,就可以查询自己的大数据信用报告,包含了个人基本信息、多头借贷情况、黑名单检测、法院失信情况、运营商情况,身份信息安全情况,从而了解到自握蔽扮身的信用风险情况,是否近期适合去申请借贷,去申请借贷之后被拒的概率有并念多大。
② 京东如何进行大数据采集和分析
京东进行大数据采集和分析主要是通过用户行为日志采集方案(点击流系统)和通用数据采集方案(数据直通车)。京东的数据目前包含了电商、金融、广告、配送、智能硬件、运营、线下、线上等场景的数据,每个场景的数据背后都存在着众多复杂的业务逻辑。为了帮助业务人员降低获取数据的门槛,简化数据获取的流程,同时帮助分析人员方便快捷地进行数据统计分析,进而挖掘数据的潜在价值,京东搭建了一套完整的数据解决方案。x0dx0a更多关于京东如何进行大数据采集和分析,进入:https://www.abcgonglue.com/ask/b0348f1615822942.html?zd查看更多内容
③ 大数据分析方法解读以及相关工具介绍
大数据分析方法解读以及相关工具介绍
要知道,大数据已不再是数据大,最重要的现实就是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。
越来越多的应用涉及到大数据,这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以,大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于此,大数据分析方法理论有哪些呢?
大数据分析的五个基本方面
(预测性分析能力)
数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。
(数据质量和数据管理)
数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。
AnalyticVisualizations(可视化分析)
不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。
SemanticEngines(语义引擎)
我们知道由于非结构化数据的多样性带来了数据分析的新的挑战,我们需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从“文档”中智能提取信息。
DataMiningAlgorithms(数据挖掘算法)
可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。
假如大数据真的是下一个重要的技术革新的话,我们最好把精力关注在大数据能给我们带来的好处,而不仅仅是挑战。
大数据处理
大数据处理数据时代理念的三大转变:要全体不要抽样,要效率不要绝对精确,要相关不要因果。具体的大数据处理方法其实有很多,但是根据长时间的实践,笔者总结了一个基本的大数据处理流程,并且这个流程应该能够对大家理顺大数据的处理有所帮助。整个处理流程可以概括为四步,分别是采集、导入和预处理、统计和分析,以及挖掘。
采集
大数据的采集是指利用多个数据库来接收发自客户端的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。
在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片的确是需要深入的思考和设计。
统计/分析
统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
导入/预处理
虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
挖掘
与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的K-Means、用于统计学习的SVM和用于分类的Naive Bayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,还有,常用数据挖掘算法都以单线程为主。
大数据分析工具详解 IBM惠普微软工具在列
去年,IBM宣布以17亿美元收购数据分析公司Netezza;EMC继收购数据仓库软件厂商Greenplum后再次收购集群NAS厂商Isilon;Teradata收购了Aster Data 公司;随后,惠普收购实时分析平台Vertica等,这些收购事件指向的是同一个目标市场——大数据。是的,大数据时代已经来临,大家都在摩拳擦掌,抢占市场先机。
而在这里面,最耀眼的明星是hadoop,Hadoop已被公认为是新一代的大数据处理平台,EMC、IBM、Informatica、Microsoft以及Oracle都纷纷投入了Hadoop的怀抱。对于大数据来说,最重要的还是对于数据的分析,从里面寻找有价值的数据帮助企业作出更好的商业决策。下面,我们就来看以下八大关于大数据分析的工具。
EMC Greenplum统一分析平台(UAP)
Greenplum在2010年被EMC收购了其EMC Greenplum统一分析平台(UAP)是一款单一软件平台,数据团队和分析团队可以在该平台上无缝地共享信息、协作分析,没必要在不同的孤岛上工作,或者在不同的孤岛之间转移数据。正因为如此,UAP包括ECM Greenplum关系数据库、EMC Greenplum HD Hadoop发行版和EMC Greenplum Chorus。
EMC为大数据开发的硬件是模块化的EMC数据计算设备(DCA),它能够在一个设备里面运行并扩展Greenplum关系数据库和Greenplum HD节点。DCA提供了一个共享的指挥中心(Command Center)界面,让管理员可以监控、管理和配置Greenplum数据库和Hadoop系统性能及容量。随着Hadoop平台日趋成熟,预计分析功能会急剧增加。
IBM打组合拳提供BigInsights和BigCloud
几年前,IBM开始在其实验室尝试使用Hadoop,但是它在去年将相关产品和服务纳入到商业版IBM在去年5月推出了InfoSphere BigI云版本的 InfoSphere BigInsights使组织内的任何用户都可以做大数据分析。云上的BigInsights软件可以分析数据库里的结构化数据和非结构化数据,使决策者能够迅速将洞察转化为行动。
IBM随后又在10月通过其智慧云企业(SmartCloud Enterprise)基础架构,将BigInsights和BigSheets作为一项服务来提供。这项服务分基础版和企业版;一大卖点就是客户不必购买支持性硬件,也不需要IT专门知识,就可以学习和试用大数据处理和分析功能。据IBM声称,客户用不了30分钟就能搭建起Hadoop集群,并将数据转移到集群里面,数据处理费用是每个集群每小时60美分起价。
Informatica 9.1:将大数据的挑战转化为大机遇
Informatica公司在去年10月则更深入一步,当时它推出了HParser,这是一种针对Hadoop而优化的数据转换环境。据Informatica声称,软件支持灵活高效地处理Hadoop里面的任何文件格式,为Hadoop开发人员提供了即开即用的解析功能,以便处理复杂而多样的数据源,包括日志、文档、二进制数据或层次式数据,以及众多行业标准格式(如银行业的NACHA、支付业的SWIFT、金融数据业的FIX和保险业的ACORD)。正如数据库内处理技术加快了各种分析方法,Informatica同样将解析代码添加到Hadoop里面,以便充分利用所有这些处理功能,不久会添加其他的数据处理代码。
Informatica HParser是Informatica B2B Data Exchange家族产品及Informatica平台的最新补充,旨在满足从海量无结构数据中提取商业价值的日益增长的需求。去年, Informatica成功地推出了创新的Informatica 9.1 for Big Data,是全球第一个专门为大数据而构建的统一数据集成平台。
甲骨文大数据机——Oracle Big Data Appliance
甲骨文的Big Data Appliance集成系统包括Cloudera的Hadoop系统管理软件和支持服务Apache Hadoop 和Cloudera Manager。甲骨文视Big Data Appliance为包括Exadata、Exalogic和 Exalytics In-Memory Machine的“建造系统”。Oracle大数据机(Oracle Big Data Appliance),是一个软、硬件集成系统,在系统中融入了Cloudera的Distribution Including Apache Hadoop、Cloudera Manager和一个开源R。该大数据机采用Oracle Linux操作系统,并配备Oracle NoSQL数据库社区版本和Oracle HotSpot Java虚拟机。Big Data Appliance为全架构产品,每个架构864GB存储,216个CPU内核,648TBRAW存储,每秒40GB的InifiniBand连接。Big Data Appliance售价45万美元,每年硬软件支持费用为12%。
甲骨文Big Data Appliance与EMC Data Computing Appliance匹敌,IBM也曾推出数据分析软件平台InfoSphere BigInsights,微软也宣布在2012年发布Hadoop架构的SQL Server 2012大型数据处理平台。
统计分析方法以及统计软件详细介绍
统计分析方法有哪几种?下面我们将详细阐述,并介绍一些常用的统计分析软件。
一、指标对比分析法指标对比分析法
统计分析的八种方法一、指标对比分析法指标对比分析法,又称比较分析法,是统计分析中最常用的方法。是通过有关的指标对比来反映事物数量上差异和变化的方法。有比较才能鉴别。单独看一些指标,只能说明总体的某些数量特征,得不出什么结论性的认识;一经过比较,如与国外、外单位比,与历史数据比,与计划相比,就可以对规模大小、水平高低、速度快慢作出判断和评价。
指标分析对比分析方法可分为静态比较和动态比较分析。静态比较是同一时间条件下不同总体指标比较,如不同部门、不同地区、不同国家的比较,也叫横向比较;动态比较是同一总体条件不同时期指标数值的比较,也叫纵向比较。这两种方法既可单独使用,也可结合使用。进行对比分析时,可以单独使用总量指标或相对指标或平均指标,也可将它们结合起来进行对比。比较的结果可用相对数,如百分数、倍数、系数等,也可用相差的绝对数和相关的百分点(每1%为一个百分点)来表示,即将对比的指标相减。
二、分组分析法指标对比分析法
分组分析法指标对比分析法对比,但组成统计总体的各单位具有多种特征,这就使得在同一总体范围内的各单位之间产生了许多差别,统计分析不仅要对总体数量特征和数量关系进行分析,还要深入总体的内部进行分组分析。分组分析法就是根据统计分析的目的要求,把所研究的总体按照一个或者几个标志划分为若干个部分,加以整理,进行观察、分析,以揭示其内在的联系和规律性。
统计分组法的关键问题在于正确选择分组标值和划分各组界限。
三、时间数列及动态分析法
时间数列。是将同一指标在时间上变化和发展的一系列数值,按时间先后顺序排列,就形成时间数列,又称动态数列。它能反映社会经济现象的发展变动情况,通过时间数列的编制和分析,可以找出动态变化规律,为预测未来的发展趋势提供依据。时间数列可分为绝对数时间数列、相对数时间数列、平均数时间数列。
时间数列速度指标。根据绝对数时间数列可以计算的速度指标:有发展速度、增长速度、平均发展速度、平均增长速度。
动态分析法。在统计分析中,如果只有孤立的一个时期指标值,是很难作出判断的。如果编制了时间数列,就可以进行动态分析,反映其发展水平和速度的变化规律。
进行动态分析,要注意数列中各个指标具有的可比性。总体范围、指标计算方法、计算价格和计量单位,都应该前后一致。时间间隔一般也要一致,但也可以根据研究目的,采取不同的间隔期,如按历史时期分。为了消除时间间隔期不同而产生的指标数值不可比,可采用年平均数和年平均发展速度来编制动态数列。此外在统计上,许多综合指标是采用价值形态来反映实物总量,如国内生产总值、工业总产值、社会商品零售总额等计算不同年份的发展速度时,必须消除价格变动因素的影响,才能正确的反映实物量的变化。也就是说必须用可比价格(如用不变价或用价格指数调整)计算不同年份相同产品的价值,然后才能进行对比。
为了观察我国经济发展的波动轨迹,可将各年国内生产总值的发展速度编制时间数列,并据以绘制成曲线图,令人得到直观认识。
四、指数分析法
指数是指反映社会经济现象变动情况的相对数。有广义和狭义之分。根据指数所研究的范围不同可以有个体指数、类指数与总指数之分。
指数的作用:一是可以综合反映复杂的社会经济现象的总体数量变动的方向和程度;二是可以分析某种社会经济现象的总变动受各因素变动影响的程度,这是一种因素分析法。操作方法是:通过指数体系中的数量关系,假定其他因素不变,来观察某一因素的变动对总变动的影响。
用指数进行因素分析。因素分析就是将研究对象分解为各个因素,把研究对象的总体看成是各因素变动共同的结果,通过对各个因素的分析,对研究对象总变动中各项因素的影响程度进行测定。因素分析按其所研究的对象的统计指标不同可分为对总量指标的变动的因素分析,对平均指标变动的因素分析。
五、平衡分析法
平衡分析是研究社会经济现象数量变化对等关系的一种方法。它把对立统一的双方按其构成要素一一排列起来,给人以整体的概念,以便于全局来观察它们之间的平衡关系。平衡关系广泛存在于经济生活中,大至全国宏观经济运行,小至个人经济收支。平衡种类繁多,如财政平衡表、劳动力平衡表、能源平衡表、国际收支平衡表、投入产出平衡表,等等。平衡分析的作用:一是从数量对等关系上反映社会经济现象的平衡状况,分析各种比例关系相适应状况;二是揭示不平衡的因素和发展潜力;三是利用平衡关系可以从各项已知指标中推算未知的个别指标。
六、综合评价分析
社会经济分析现象往往是错综复杂的,社会经济运行状况是多种因素综合作用的结果,而且各个因素的变动方向和变动程度是不同的。如对宏观经济运行的评价,涉及生活、分配、流通、消费各个方面;对企业经济效益的评价,涉及人、财、物合理利用和市场销售状况。如果只用单一指标,就难以作出恰当的评价。
进行综合评价包括四个步骤:
1.确定评价指标体系,这是综合评价的基础和依据。要注意指标体系的全面性和系统性。
2.搜集数据,并对不同计量单位的指标数值进行同度量处理。可采用相对化处理、函数化处理、标准化处理等方法。
3.确定各指标的权数,以保证评价的科学性。根据各个指标所处的地位和对总体影响程度不同,需要对不同指标赋予不同的权数。
4.对指标进行汇总,计算综合分值,并据此作出综合评价。
七、景气分析
经济波动是客观存在的,是任何国家都难以完全避免的。如何避免大的经济波动,保持经济的稳定发展,一直是各国政府和经济之专家在宏观调控和决策中面临的重要课题,景气分析正是适应这一要求而产生和发展的。景气分析是一种综合评价分析,可分为宏观经济景气分析和企业景气调查分析。
宏观经济景气分析。是国家统计局20世纪80年代后期开始着手建立监测指标体系和评价方法,经过十多年时间和不断完善,已形成制度,定期提供景气分析报告,对宏观经济运行状态起到晴雨表和报警器的作用,便于国务院和有关部门及时采取宏观调控措施。以经常性的小调整,防止经济的大起大落。
企业景气调查分析。是全国的大中型各类企业中,采取抽样调查的方法,通过问卷的形式,让企业负责人回答有关情况判断和预期。内容分为两类:一是对宏观经济总体的判断和预期;一是对企业经营状况的判断和预期,如产品订单、原材料购进、价格、存货、就业、市场需求、固定资产投资等。
八、预测分析
宏观经济决策和微观经济决策,不仅需要了解经济运行中已经发生了的实际情况,而且更需要预见未来将发生的情况。根据已知的过去和现在推测未来,就是预测分析。
统计预测属于定量预测,是以数据分析为主,在预测中结合定性分析。统计预测的方法大致可分为两类:一类是主要根据指标时间数列自身变化与时间的依存关系进行预测,属于时间数列分析;另一类是根据指标之间相互影响的因果关系进行预测,属于回归分析。
预测分析的方法有回归分析法、滑动平均法、指数平滑法、周期(季节)变化分析和随机变化分析等。比较复杂的预测分析需要建立计量经济模型,求解模型中的参数又有许多方法。
④ 如何使用大数据对图像进行处理
1.可视化分析
大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图桥猜说话一样简单明了。
2. 数据挖掘算法
大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计 学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如 果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。
3. 预测性分析
大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入竖物新的数据,从而预测未来的数据。
4. 语义引擎
非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。
5.数据质量和数据管理。 大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。
大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。
大数据的技术
数据采集: ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
数据存取: 关系数据库、NOSQL、SQL等。
基础架构: 云存储、分布式文件存储等。
数据处理: 自然语言处理(NLP,Natural Language Processing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机”理解”自然语言,所以自然语言处理又叫做自然语言理解也称为计算语言学。一方面它是语言信息处理的一个分支,另一方面它是人工智能的核心课题之一。
统计分析: 假设检验、显着性检验、差异分析、相关分析、T检验、 方差分析 、 卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、 因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。
数据挖掘: 分类 (Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)
模型预测 :预测模型、机器学习、建模仿真。
结果呈现: 云计算、标签云、关系图等。
大数据的处理
1. 大数据处理之一:采集
大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的 数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每余消液一笔事务数据,除 此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。
在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户 来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间 进行负载均衡和分片的确是需要深入的思考和设计。
2. 大数据处理之二:导入/预处理
虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这 些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使 用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。
导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
3. 大数据处理之三:统计/分析
统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通 的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于 MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。
统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
4. 大数据处理之四:挖掘
与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数 据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于 统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并 且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。
整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。
⑤ 大数据怎么采集数据
数据采集是所有数据系统必不可少的,随着大数据越来越被重视,数据采集的挑战也变的尤为突出。我们今天就来看看大数据技术在数据采集方面采用了哪些方法:
1、离线采集:工具:ETL;在数据仓库的语境下,ETL基本上就是数据采集的代表,包括数据的提取(Extract)、转换(Transform)和加载(Load)。在转换的过程中,需要针对具体的业务场景对数据进行治理,例如进行非法数据监测与过滤、格式转换与数据规范化、数据替换、保证数据完整性等。
2、实时采集:工具:Flume/Kafka;实时采集主要用在考虑流处理的业务场景,比如,用于记录数据源的执行的各种操作活动,比如网络监控的流量管理、金融应用的股票记账和 web 服务器记录的用户访问行为。在流处理场景,数据采集会成为Kafka的消费者,就像一个水坝一般将上游源源不断的数据拦截住,然后根据业务场景做对应的处理(例如去重、去噪、中间计算等),之后再写入到对应的数据存储中。这个过程类似传统的ETL,但它是流式的处理方式,而非定时的批处理Job,些工具均采用分布式架构,能满足每秒数百MB的日志数据采集和传输需求。
3、互联网采集:工具:Crawler, DPI等;Scribe是Facebook开发的数据(日志)收集系统。又被称为网页蜘蛛,网络机器人,是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本,它支持图片、音频、视频等文件或附件的采集。爬虫除了网络中包含的内容之外,对于网络流量的采集可以使用DPI或DFI等带宽管理技术进行处理。
4、其他数据采集方法对于企业生产经营数据上的客户数据,财务数据等保密性要求较高的数据,可以通过与数据技术服务商合作,使用特定系统接口等相关方式采集数据。比如八度云计算的数企BDSaaS,无论是数据采集技术、BI数据分析,还是数据的安全性和保密性,都做得很好。数据的采集是挖掘数据价值的第一步,当数据量越来越大时,可提取出来的有用数据必然也就更多。只要善用数据化处理平台,便能够保证数据分析结果的有效性,助力企业实现数据驱动。
⑥ 如何知道艾瑞报告的数据采集途径在哪里
如何知道艾瑞报告的数据采集途径在哪里?关于这个问题有以下解释:物联网系统
数据采集的三大渠道
要想了解大数据的数据采集过程,首先要知道大数据的数据来源,目前大数据的主要数据来源有三个途径,分别是物联网系统、Web系统和传统信息系统,所以数据采集主要的渠道就是这三个。
物联网的发展是导致大数据产生的重要原因之一,物联网的数据占据了整个大数据百分之九十以上的份额,所以说没有物联网就没有大数据。物联网的数据大部分是非结构化数据和半结构化数据,采集的方式通常有两种,一种是报文,另一种是文件。在采集物联网数据的时候往往需要制定一个采集的策略,重点有两方面,一个是采集的频率(时间),另一个是采集的维度(参数)。
Web系统是另一个重要的数据采集渠道,随着Web2.0的发展,整个Web系统涵盖了大量的价值化数据,而且这些数据与物联网的数据不同,Web系统的数据往往是结构化数据,而且数据的价值密度比较高,所以通常科技公司都非常注重Web系统的数据采集过程。目前针对Web系统的数据采集通常通过网络爬虫来实现,可以通过Python或者Java语言来完成爬虫的编写,通过在爬虫上增加一些智能化的操作,爬虫也可以模拟人工来进行一些数据爬取过程。
⑦ 大数据排查怎么查
首先搜哗你要明确你要查什么样的数据,只有明确了目标,你世慎行才能通过各种渠道得到你想要的结果。
大数据分很多种,例如媒体传播的数据、微博互动的数据、微信互动的数据、ZF公开的数据、居民消费数据、监控视频数据……这些都属于大数据的范畴。每一种数据的获取方式及途径都不一样。
有的数据是公开透明的,你只需要进入特定的网站,进行查询就行了。例如网络、谷歌、还有现在的头条,你想要某些方面的信息,通过关键词就可以在他们的数据库进行查询,并且得到部分的结果。还有 一些是有一些特定的机构或部分公开的数据,例如一些研究报告,ZF公开数据,这些需孝磨要到特定的网站进行查询。
有的数据是属于商业数据,你就要购买相应的软件和服务进行查询和采集。例如舆情监测系统,是可以将全媒体数据进行实时采集,进行分类,语义分析,调性判断,危机预警等功能于一体的系统。也是基于关键词对特定的网站进行深度采集。这样的服务就需要你付费使用了。
⑧ 鹰眼大数据怎么查询
1、首先找个浏览器,搜索鹰眼智客APP下载,下载完,打开我们的鹰眼智客。
2、其次就是我们打开后的鹰眼智客App的界面了,目前只有高德地图采集、腾讯地图采集、阿里巴巴采集可以免费体验。
3、然后我们先使用高德地图演示一下,因为操作步骤都是一样的,就是根据关键词去搜索采集的。
4、最后进入高德地图后就会图案出一个选择框选择地区和关键词后就可以看到,然后点击采集,就开始采集了,采集出来的数据试用版本是没有办法导出的!导出和群发短信等功能是需要开通权限的。
⑨ 如何实现企业大数据采集,可视化及应用管理
企业大数据,其本质就是信息采集。
信息采集系统最先进的是基于web2db knowlesys的,最大的特点是:采集方法的灵活性与采集数据的准确性
灵活性:任何复杂的查询与页面布局都可以灵活处理
准确性:结果数据高度准确(99%-100%)
系统原理是这样的:
特点分点描述如下:
♦ 对目标网站进行信息自动抓取,支持HTML页面内各种数据的采集,如文本信息,URL,数字,日期,图片等
♦ 用户对每类信息自定义来源与分类-=
♦ 可以下载图片与各类文件
♦ 支持用户名与密码自动登录
♦ 支持命令行格式,可以Windows任务计划器配合,定期抽取目标网站
♦ 支持记录唯一索引,避免相同信息重复入库
♦ 支持智能替换功能,可以将内容中嵌入的所有的无关部分如广告去除
♦ 支持多页面文章内容自动抽取与合并
♦ 支持下一页自动浏览功能
♦ 支持直接提交表单
♦ 支持模拟提交表单a33lcc乐a思aw
♦ 支持动作脚本
♦ 支持从一个页面中抽取多个数据表
♦ 支持数据的多种后期处理方式
♦ 数据直接进入数据库而不是文件中,因此与利用这些数据的网站程序或者桌面程序之间没有任何耦合
♦ 支持数据库表结构完全自定义,充分利用现有系统
♦ 支持多个栏目的信息采集可用同一配置一对多处理
♦ 保证信息的完饥汪整性与准确性,绝不会出现乱码枯态
♦ 支持所没肢源有主流数据库:MS SQL Server, Oracle, DB2, MySQL, Sybase, Interbase, MS Access等
⑩ 大数据怎么收集
大数据分析处理解决方案
方案阐述
每天,中国网民通过人和人的互动,人和平台的互动,平台与平台的互动,实时生产海量数据。这些数据汇聚在一起,就能够获取到网民当判孙下的情绪、行为、关注点和兴趣点、归属地、移动路径、社会关系链等一系列有价值的信息。
数亿网民实时留下的痕迹,可以真实反映当下的世界。微观层面,我们可以看到个体们在想什么,在干什么,及时发现舆情的弱信号。宏观层面,我们可以看到当下的中国正在发生什么,将要发生什么,以及为什么?借此可以观察舆情的整体态势,洞若观火。
原本分散、孤立的信息通过分析、挖掘具有了关联性,激发了智慧感知,感知用户真实的态度和需求,辅助政府在智慧城市,企业在品牌传播、产品口碑、营销分析等方面的工作。
所谓未雨绸缪,防患于未然,最好的舆情应对处置莫过于让舆情事件不发生。除了及时发现问题,大数据还可以帮我们预测未来。具体到舆情服务,舆情工作人员除了对舆情个案进行数据采集、数据分析之外,还可以通过大数据不断增强关联舆情信息的分析和预测,把服务的重点从单纯的收集有效数据向对舆情的深入研判拓展,通过对同类型舆情事件历史数据,及影响舆情演进变化的其他因素进行大数据分析,提炼出相关舆情的规律和特点。
大数据时代的舆情管理不再局限于危机解决,而是梳理出危机可能产生的各种条件和因素,以及从负面信息转化成舆情事件的关键节点和衡量指标,增强我们对同类型舆情事件的认知和理解,帮助我们更加精准的预测未来。
用大数据引领创新管理。无论是政府的公共事务管理还是企业的管理决策都要用数据说话。政府部门在出台社会规范毕冲耐和政策时,采用大数据进行分析,可以避免个人意志带来的主观性、片面性和局限性,可以减少因缺少数据支撑而带来的偏差,降低决策风险。通过大数据挖掘和分析技术,可以有针对性地解决社会治理难题;针对不同社会细分人群,提供精细化的服务和管理。政府和企业应建立数据库资源的共享和开放利用机制,打破部门间的“信息孤岛”,加强互动反馈。通过搭建关联领域的数据库、舆情基础数据库等,充分整合外部互联网数据和用户自身的业务数据,通过数据的融合,进行多维数据的关联分析,进而完善决策流程,使数据驱动的社会决策与科学治理常态化,这是大数据时代舆情管理在服务上的延伸。
解决关键
如何能够快速的找到所手春需信息,采集是大数据价值挖掘最重要的一环,其后的集成、分析、管理都构建于采集的基础,多瑞科舆情数据分析站的采集子系统和分析子系统可以归类热点话题列表、发贴数量、评论数量、作者个数、敏感话题列表自动摘要、自动关键词抽取、各类别趋势图表;在新闻类报表识别分析归类: 标题、出处、发布时间、内容、点击次数、评论人、评论内容、评论数量等;在论坛类报表识别分析归类: 帖子的标题、发言人、发布时间、内容、回帖内容、回帖数量等。
解决方案
多瑞科舆情数据分析站系统拥有自建独立的大数据中心,服务器集中采集对新闻、论坛、微博等多种类型互联网数据进行7*24小时不间断实时采集,具备上千亿数据量的数据索引、挖掘分析和存储能力,支撑政府、企业、媒体、金融、公安等多行业用户的舆情分析云服务。因此多瑞科舆情数据分析站系统在这方面有着天然优势,也是解决信息数量和信息(有价值的)获取效率之间矛盾的唯一途径,系统利用各种数据挖掘技术将产生人工无法替代的效果,为市场调研工作节省巨大的人力经费开支。
实施收益
多瑞科舆情数据分析站系统可通过对大数据实时监测、跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。
系统实施
系统主要应用于负责信息管理的相关部门。由于互联网的复杂性,多瑞科网络舆情监测系统实施起来需要客户的配合。