导航:首页 > 数据处理 > 天文成像数据从哪里获得

天文成像数据从哪里获得

发布时间:2023-05-16 05:54:21

❶ 人类没出过银河系,那银河系的照片是哪里来的

首先,迄今为止,人类发射的航天器还从未飞出过太阳系。要知道广义的太阳系半径在1至3光年之间,而目前飞得最远的航天器(旅行者1号)距离太阳只有141天文单位,相当于19.5光时,或者0.00223光年。照此推算,目前飞得最远的航天器离开太阳系至少还要再过1.76万年的时间。

人类的航天器目前还未飞出太阳系,更没有飞出银河系,所以我们还无法直接拍摄到银河系的整体外观。事实上,当前的银河系照片都是根据天文观测数据模拟出来的。尽管这些照片可能与银河系的真实外观有所出入,但应该不会相差太大。那么,天文学家是如何知道我们星系的大致外观呢?

首先,宇宙中的河外星系可作为参考。虽然星系的数量很多,但基本上可以分为三类,分别是椭圆、螺旋(又分普通和棒旋)以及不规则星系。通过观测银河系中大量恒星的运动规律,天文学家逐渐确定了银河系中心的位置,太阳系与银心的距离,银河系的直径、厚度以及质量。此外,天文学家还发现银河系拥有四条大旋臂,以及几条支臂。再通过研究河外星系的结构,最终天文学家可以模拟出银河系的外观。基于先进的天文观测手段,我们现在可以知道银河系的外观八九不离十。

至于银河系的实际外观究竟是怎样的,只有把航天器送出银河系之后才能知道。鉴于银河系的厚度,仿启航天器可能要距离银河系盘面至少几千光年才能拍摄到银河系的全貌。然而,在现实中,人类还无法造出速度足够快的航天器能飞出银河系。

人类没出过银河系,那银河系的照片是哪里来的?

银河拿带系只有一张照片,其余的都是电脑合成或者构想的图片。

唯一的一张照片是NASA发射的斯皮策太空望远镜,经过10年拍摄获得的200万张照片合成的,是一张银河系360度全景图。 就是上面那张照片。 一般人还看不懂,只有专业人士或者天文爱好者才能够看出端倪,从中获得许多知识、信息和乐趣。

这张图片包含的信息量很大,有200亿像素,如果把它打印出来,需要一个 体育 场那么大的地方才能够展示,因此NASA决定公布数字版,免费让全球科学家和天文爱好者们查询。

斯皮策望远镜是一台世界最大的红外望远镜。

这台望远镜于2008年3月升空,其轨道很独特,一直躲在地球背面与地球保持同样角速度绕太阳旋转,这样可以躲避太阳光直射,为望远镜提供天然冷却,降低液氦用量,确保望远镜红外波段性能。

科学家们之所有把望远镜送上太空,是因为在那里观测可以避备敏如免大气的扰动,可以更清晰的看往深空。每一台轨道天文望远镜,实际上就是一台轨道天文台。斯皮策望远镜原计划任务为2.5年,但实际服役了15年。

使得NASA无可奈何不得不让斯皮策退役的原因,主要是这台望远镜在环绕太阳的轨道上,依靠地球引力牵引,但每年会以0.1天文单位(约1500万千米)的速度逐渐远离地球,现在已经距离地球2.54亿千米了,存在冷却剂耗尽,远红外功能只能停止,电力不足等诸多问题,而且还将渐行渐远,所以NASA不得不于2020年1月30日让其退役。

斯皮策兢兢业业的服役了15年,当然不只是拍摄了一张银河系图片。

斯皮策望远镜还有许多深空发现。如类星体、令人震撼的“宇宙巨眼”螺旋星云、130亿光年的黑洞、直接观测到行星、探测到13000光年最远的行星、发现濒死恒星附近巴基球、识别太阳系外行星大气分子等等。

这里就不一一为斯皮策评功摆好了,回到它拍摄的这张图片。

这张巨大的银河系图片,大家通过逻辑想一想,就应该知道,不可能是一张从外部拍摄的银河系全貌,斯皮策还没这个本事跑到20万光年直径的银河系外面去摆拍,而是在我们地球这个位置,环绕着拍了一圈银河系而已。

这实际上就是在银河系肚子里向外拍摄的一张照片,这张照片只占有3%的天区,却包含了银河系一半以上的恒星,而且由于红外线能够穿越星际尘埃,拍摄到了被遮挡的银河系中心密集的恒星亮光。

但充斥网络的无数银河系外观照片又是怎么来的呢?

原来那些所谓的“照片”并不是照片,而是电脑制作出来的构想图。有些是科学家,有些是艺术家,有些就是爱好者弄的。他们根据人类长期天文观测得到的数据资料,通过电脑建模,模拟出了银河系的样子。

自从伽利略发明了望远镜,数百年来,人们就对太空充满了兴趣,观测得到了许许多多的天文资料,尤其是近百年来了,人们获得了大量准确的天文天体方位信息,而且观测到了大量的银河系外星系,拍摄到了这些五花八门星系的真实照片。

根据星系的外形,大致分为椭圆星系、螺旋星系和不规则星系。

有人又把螺旋星系分成旋涡星系、棒旋星系、螺旋星系三种,这几种星系大致都有悬臂螺旋状。但旋涡星系一般更大一些,悬臂更精致一些,由于有弥漫物质充填其中,看起来更饱满光亮一些;相对来说螺旋星系的悬臂就要松散一些;而棒旋星系就是在中心有一个呈棒状高密度恒星区,有两条对称大的悬臂,还有若干小悬臂。

不规则星系一般都是较小的星系,质量只有太阳的1亿倍到几十亿倍之间,也有达到100亿倍的,它们没有固定结构,形状不规则。

椭圆星系一般都是大星系,研究认为是星系碰撞融合后形成的大型星系,里面绝大多数都是成熟和老年恒星。

科学家们根据发现的这些星系,通过掌握的银河系各种信息数据,就渐渐完善了银河系的样子,认定我们银河系是一个棒旋星系,而我们太阳系家族,就坐落在距离银河系中心2.6万光年的一条猎户支臂上,以每秒约240千米的速度,围绕着银河系中心公转,转一圈约需2.25亿年。

现在网络上流传的所有银河系外观图片,都是人们想象的或者通过电脑建模的图片,并非照片。

就是这样,欢迎讨论,感谢阅读。

我们人类的可见光视野毕竟有限,但我们可以借助 科技 力量使它极大地延伸,在地球上我的有各种大型天文望远镜,在太空有在轨的哈勃望远镜,在深空,有多国发射的各种类型的探测器,当然它们不是象人的眼睛一样通过物体反射可见光成像,而是通过各种各样的传感器探测采集不同波长的可见或不可见光波和宇宙射线粒子,生成数据传到专业的数据处理中心,经过处理数据,生成人们看到的各种宇宙星系图。

因为,有的地方,站在地球人们,使用肉眼就能看到部分银河系,所以,借助当今 科技 ;高倍望远镜;宇宙飞船;航天器协;加高清摄相机等。应该很容易排到银河系,其它星系。请于参考,谢啦。

人类都还没有走出太阳系,可是那些银河系的照片是怎么拍的呢?又是怎样拍出来的呢?

好了今天晚上的分享就到这了谢谢大家的支持与阅读,宇宙是如此神秘而美丽,等待着你去发现与 探索 !

首先,迄今为止,人类发射的航天器还从未飞出过太阳系。要知道广义的太阳系半径在1至3光年之间,而目前飞得最远的航天器(旅行者1号)距离太阳只有141天文单位,相当于19.5光时,或者0.00223光年。照此推算,目前飞得最远的航天器离开太阳系至少还要再过1.76万年的时间。 人类的航天器目前还未飞出太阳系,更没有飞出银河系,所以我们还无法直接拍摄到银河系的整体外观。事实上,当前的银河系照片都是根据天文观测数据模拟出来的。尽管这些照片可能与银河系的真实外观有所出入,但应该不会相差太大。那么,天文学家是如何知道我们星系的大致外观呢?

首先,宇宙中的河外星系可作为参考。虽然星系的数量很多,但基本上可以分为三类,分别是椭圆、螺旋(又分普通和棒旋)以及不规则星系。通过观测银河系中大量恒星的运动规律,天文学家逐渐确定了银河系中心的位置,太阳系与银心的距离,银河系的直径、厚度以及质量。此外,天文学家还发现银河系拥有四条大旋臂,以及几条支臂。再通过研究河外星系的结构,最终天文学家可以模拟出银河系的外观。基于先进的天文观测手段,我们现在可以知道银河系的外观八九不离十。 至于银河系的实际外观究竟是怎样的,只有把航天器送出银河系之后才能知道。鉴于银河系的厚度,航天器可能要距离银河系盘面至少几千光年才能拍摄到银河系的全貌。然而,在现实中,人类还无法造出速度足够快的航天器能飞出银河系。

这些照片是机算机根据银河系特征参考模拟出来的,并不是真的。

确实如此,我们身处银河系之中,怎么会知道银河系的全貌呢?网上流传的不是真正的银河系照片,这只是我们银河系的艺术表现。

地球距离银河系中心约2.7万光年,位于一个1000光年厚的星系中央。从这个知位置,隐藏在银河系内部。

所谓的自上而下的银道河系视图——美丽的银河系核心的图片,我们版是不可能从地球上看到的。

旅行者1号于1977年发射,经过35年的飞行,现在才到达太阳系的边缘。即使我们有一台照相机安置在银河系之外,它也需要数千年的时间来接收图像数据。

但是,当我们自己在星系内部时,我们如何知道星系的形状呢?

答案是通过研究中性和电离氢的密度以及恒星的旋转运动。这些研究表明,银河系是一个筒状螺旋星系。我们还可以从上到下拍摄附近星系的图像,比如仙女座星系(M31)、NGC 3344和漩涡星系(M51)。

这些图像很可能是我们的星系从外部看起来的一个很好的近似图,但它们不是真的照片。

银河系的哪些部分可以拍照?我们能拍摄和重建的是银河系侧面的图像。权从地球上,我们可以从侧面看到银河系的星系中心。

通过拍摄大量的图像,可以构建出银河系边缘的全景图。由于地球是一个重要的中心距离,所以就可以用计算机模拟出图像。

不走出,为什么就拍不到呢?

这个和你拍照,拍月亮,太阳是一个意思,最先没有卫星时难道看不见吗?

从A点到B点你不过去,但你可以看到

❷ 遥感光谱数据的获取

遥感技术从航空摄影测量逐步演变发展起来,大致经历了3个发展阶段:

1.航空摄影测量发展阶段

目前仍保存着的最早一帧航空相片是1860年J.W.布莱克从气球上拍摄的波士顿市的相片。在地质上的应用则始于1913年,有人在飞机上用摄影机对着非洲利比亚的本格逊油田摄影成像,并用这套肮空相片编制了本格逊油田地质图。航空摄影遥感主要以飞机或者气球为运载工具,用航空摄影机对目标获取信息,然后再经过负片和正片过程得到最终的航空相片。航空摄影利用的是电磁波可见光全色波段,用感光胶片接受所摄目标物反射来的太阳光线感光、成像,一般感光片的感光范围是0.3~0.9μm。航空摄影大多数情况下是垂直摄影,即航空摄影机主轴保持沿铅垂方向进行拍照;在特殊情况下,利用专门相机进行斜倾摄影。航空摄影按所利用的电磁波波段、相应的感光片及所成图像的特点,分成4种,即:航空可见光全色黑白图像;航空可见光真彩色图像:航空红外假彩色图像:航空红外黑白图像。其中,航空可见光全色黑白图像和航空红外假彩色图像最为常用,它们主要利用地物波谱的宽波段反射强度特性。

2.多光谱卫星遥感阶段

数字卫星成像首先是从气象卫星开始的,在1960年TIROS-1气象卫星提供了非常粗糙的卫星图像,主要用来展示云的样式。随后,在1970年代,美国国家海洋和大气管理局(NOAA)发射了甚高分辨率辐射传感器(AVHRR)进行气象预报,它的地面分辨率是1.1km,我们在电视气象预报节目中看到它所获得的云图。同时,从1970年代开始,相继发射了一些搭载更高分辨率传感器的卫星。如:1972年7月23日,美国国家航空和宇宙航行局(NASA)发射了第一颗专门用来进行地球表面监测和填图的地球资源技术卫星(ERTS-U),1975年被更名为陆地卫星(Landsat)。在Landsatl-3上都装有多光谱扫描仪(MSS),该扫描仪有4个波段,即绿、红和两个红外波段,地面分辨率约为80m。1982年,Landsat4搭载了专题制图仪(TM),它有7个波段,比MSS覆盖波谱范围更宽,波段宽度划分得更细些,更能反映地物反射光谱特性的变化规律,其地面分辨率除第6波段为120m外,均为30m。多光谱遥感的最典型特征是能够利用多个波段同时获取同一目标的多个波谱特征。这样就大大提高了遥感识别地物的能力。随后各国纷纷效仿,传感器的光谱范围从可见光、红外直至微波波段,应用范围也不断扩大。

3.成像光谱遥感技术发展阶段

成像光谱遥感技术是多光谱技术发展的一次跨越。Hunt的研究结果表明特征矿物的吸收宽度大约在20~40nm,而多光谱遥感数据(例如,MSS和TM)的光谱分辨率仅为100nm左右,因此遥感科学家们开始研究高光谱分辨率和空间分辨率的遥感传感器。1981年,一台航天飞机多光谱红外辐射计(SMIRR)随着美国航天飞机“哥伦比亚”号对地球表面进行了一次有限航带的观测,第一次实现了从空间通过高光谱分辨率遥感直鉴别碳酸盐岩以及粘土高岭土矿物,由此拉开了成像光谱遥感岩性识别的新篇章。继JPL的AIS-1和AIS-2以及AVIRIS航空成像光谱仪研制成功之后,加拿大也先后研制成功了FIL/PML,CAS1及SFSI等几种成像光谱仪(童庆禧等,1993)。其他的还有:HIRIS(high resolution imaging spectrometer)成像光谱仪,在0.4~2.5μm范围内有192 个光谱波段,地面分辨率30m,在0.4~1.0μm波长范围光谱分辨率为9.4nm,1.0~2.5μm范围内为11.7nm(Goetz& Herring 1989;Kerekes & Landgrebe,1991)。美国地球物理环境研究公司(Geophysical and Environ-mental Research Corporation)的63通道成像光谱仪(GER)是专门为地质遥感研究设计的,被多次用于岩性填图(郑兰芬等,1992;Bamaby W rockwell,1997)。除航空成像光谱仪外,美国和欧洲空间局(ESA)已制定了发展航天成像光谱仪的计划,其中美国的中分辨率成像光谱仪(MODIS)已经加入地球观测系统(EOS)发射入轨,对地球实现周期性的高光谱分辨率遥感观测。欧空局的中分辨率成像光谱仪(MERIS)也将于同时发射(童庆禧等,1993)。

从1990~1995年,Roger N.Clark等人先后利用AVIRIS数据在美国内华达州,卡普来特试验场进行了矿物和岩性的识别和填图,他们发现成像光谱仪不仅能区分地表发射光谱中总体亮度和坡度差异(多光谱技术MSS,TM和SPOT区分地物的基础),而且能得出用于识别特殊地物的光谱吸收波段,成像光谱数据的光谱分析可以对任何在测量光谱范围内有独特吸收特征的物质(矿物、植被、人T物体、水体、雪等)进行识别和填图(Clark,R.N.et al.,1996)。

中国科学院上海技术物理研究所是我国成像光谱仪的主要研制机构。1983年研制成功了第一台工作于短波红外光谱区(2.05~2.5μm)的6通道红外细分光谱扫描仪,其光谱分辨率在30~50nm之间。1987年,在国家和中国科学院黄金找矿任务的驱动下,该仪器发展到12个通道,其波段位置更趋于与地面粘土矿物、碳酸盐岩矿物的吸收波段相一致,因而在地质岩性识别方面具有更大的能力(童庆禧等,1993)。另外还有热红外多光谱扫描仪(TIMS),19 波段多光谱扫描仪(AMSS)以及71波段多光谱机载成像光谱仪(MATS)等。这些光谱仪的数据主要用于油气资源遥感(朱振海,1993)和矿物制图(王晋年等,1996)等方面,数据的处理技术和矿物识别的理论研究都取得了不同程度的进展(李天宏,1997)。

综观遥感光谱数据的获取,具有几个新的发展:

①扩展了应用光谱范围,增加了光谱波段;②提高了光谱和空间分辨率;③具有获得立体像对的功能,打破了只有航空相片才能有立体像对的能力(如SPOT图像);④改进了探测器性能或探测器器件,即线、面阵CCD器件;⑤提高了图像数据精度;⑥应用领域纵向发展,如用TM图像数据直接可以识别赤铁矿、针铁矿等矿物。

在20世纪末和21世纪初,空间高光谱成像卫星已成为遥感对地观测中的一项重要前沿技术,在研究地球资源、监测地球环境中发挥越来越重要的作用。

高光谱分辨率遥感技术的发展是20世纪末的最后两个10年中人类在对地观测方面所取得的重大技术突破之一,是当前乃至21世纪初的遥感前沿技术、通过高光谱成像所获取的地球表面的图像包含了丰富的空间、辐射和光谱三重信息。进入20世纪90年代后期,伴随着高光谱遥感应用的一系列基本问题,如高光谱成像信息的定标和定量化、成像光谱图像信息可视化及多维表达、图像-光谱变换、大数据信息处理等的解决、高光谱遥感已由实验研究阶段逐步转向实际应用阶段,而作为高光谱遥感应用这一热点中的重点就是高光谱数据信息挖掘技术的提高和与之紧密相连的应用领域的扩展。

高光谱遥感数据最主要的特点是:将传统的图像维与光谱维信息融合为一体,在获取地表空间图像的同时,得到每个地物的连续光谱信息,从而实现依据地物光谱特征的地物成分信息反演与地物识别。它由以下3部分组成:

(1)空间图像维

在空间图像维,高光谱数据与一般的图像相似。一般的遥感图像模式识别算法是适用的信息挖掘技术。

(2)光谱维

从高光谱图像的每一个象元可以获得一个“连续”的光谱曲线,基于光谱数据库的“光谱匹配”技术可以实现识别地物的目的。同时大多数地物具有典型的光谱波形特征,尤其是光谱吸收特征与地物化学成分密切相关,对光谱吸收特征参数(吸收波长位置、吸收深度、吸收宽度)的提取将成为高光谱信息挖掘的主要方面。

(3)特征空间维

高光谱图像提供一个超维特征空间,对高光谱信息挖掘需要深切了解地物在高光谱数据形成的二维特征空间中分布的特点与行为,研究发现:高光谱的高维空间是相当空的,数据分布不均匀,且趋向于集中在超维立方体空间的角端,典型数据的差异性,可以映射到一系列低维的子空间,因此迫切需要发展有效的特征提取算法去发现保持重要差异性的低维子空间,从而有效地实现信息挖掘。

❸ 求基础天文知识

1: 天文学是…研究宇宙中一切物体(除了地球)的自然科学的一个分支。但是,天文学家确实也研究太阳和地球高层大气的作用,包括极光等。
2 大部分天文学家其实是天体物理学家。直到19世纪后期,天文学是很难描述和计算的。天文学家通过望远镜给天体照相并计算一些像日月蚀,行星的位置,恒星的位置和距离。尽管如此,天文学家是缺少对恒星物理性质和主宰它们为什么发光、怎样演化的物理机理的真正了解的。从那以后,我们在原子结构和物质作用知识上的突破使得天文学家通过物理规律的大方面应用而发现了宇宙的内在工作机制。这样,今天的大部分天文学家实际是天体物理学家并在做天体物理。这一头衔可以在鸡尾酒会上给人留下深刻印象。
3 天文学家大体上可以分为观测天文学家和理论天文学家。虽然一些人两方面都做,大部-分人更适合其中之一。尽管观测天文学家不必要整天埋头观测,他们要进行望远镜和仪器(如相机,光度计,光谱仪等)的研究设棚镇计来获得和分析宇宙天体的数据。另一方面,理论天文学家典型的是应用超级计算机建立模拟宇宙现象的模型。
4 观测天文学家和理论天文学家的工作经常是互相补充的。有时,观测天文学家会发现宇宙中无法解释的现象而理论天文学家会试着用数学和已知物理规律来解释观察到的东西。还有时,理论天文学家会发展一种理论预示了宇宙中某种现象或某种物理条件存在而观测天文学家会试着通过观察验证这种理论对不对。第一个例子是脉冲星的发现和后来的中子星理论。第二个例子是黑洞存在的理论假设和接着黑洞被真正发现。
5 总体来讲,研究宇宙是一件令人气馁的被动的活动。物理学家、化学家、生物学家有一个共同点:他们可以钻进实验室或到达目的地有效的创造出他们要研究的现象。他们可以接触到它,操作它,直接的和它们联系。问一个物理学家一个物质有多重,他们可以放在秤上称并马上读出来。问一个化学家一个反应放出多少热,他可以用温度计测出来。问一个生物学家一个血样有什么遗传特征,他可以立刻进行一系列小心的检测。对于天文学家来说整个宇宙就是一个实验室。但是,宇宙,用定义说就是“延展在那儿”的远在我们直接接触范围之外的所在。天文学家链脊粗虽然可以测出一颗恒星离我们的距离,但是他不能用一盒卷尺去测量来验证这个距离。天文学家想知道太阳表面的温度,但是他不能去太阳那儿插一个温度计。天文学家想知道一个遥远星系的组成,但是他不能去那儿采样再运回地球分析。然而我们确实知道恒星的距离,太阳的温度,遥远星系的组成。这就是天文学为什么是一个如此令人着迷的领域,是一件对人类思想创造性灵活性有如此贡献的礼品。
6 天文学家通过收集分析宇宙天体的光和其它波段辐射研究宇宙。天文学家不能去宇宙中大部分的行星,恒星,和星系。取而代之,他们通过天体发送给我们的信息研究宇宙。能够携带信息给我们的就是光和其他波段辐射。这样天文学家主要通过天体辐射,研究宇宙天体(由物质构成)。很快我们就会谈到辐射。你也会在本章末找到关于物质的部分。
7 光学望远镜是一件通过聚光使我们可以看到比我们只用肉眼看到的更弱物体的设备。望远镜的原理本质上是相同的。进入望远镜的光被一系列的透镜、面镜不断聚焦成更细的光柱。因为光和辐射是天文学家研究宇宙的手段,所以越多的辐射被收集,能了解的信息就越多。
8 有两种基本的光学望远镜类型。大部分不是折射望远镜就是反射望远镜。
9 折射望远镜用透镜系统聚光。小的时候大部分人有这样的经验,在晴天我们用放大镜点燃一片树叶或纸。这个实验的原理就是放大镜把表面的光聚焦成一点,使这一点的温度特别高,即光度特别大。一架折射望远镜用透镜组完成同样的事情。在折射望远镜大的一端有两片大小相等但不同类型的镜片。当光通过它们,它们共同工作把光聚焦在望远镜筒另一端。在这一点,不管望远镜指向哪里都会成像。
10 反射望远镜用一面或多面反射镜完成相同的事情。在一架简单的反射望远镜中,遥远光束落在反射镜上。这面反野旅射镜不是平的,它是凹面的。结果就会产生聚焦的效果。一种具体的形状是抛物面,可以使平行光轴的入射光聚焦在同一点。像折射望远镜一样,遥远物体在这一点成像。
11 一种简单的普通的被广大天文爱好者喜爱的反射望远镜是牛顿发明的。这一款今天被称为牛顿式反射望远镜的设计,在镜筒一端用凹抛物面集光聚焦。为了观测者方便,在镜筒里面另一端放置一块平面镜把光反射到镜筒侧面安装目镜的地方。许多天文爱好者都有这种设计的望远镜。
12 口径几到几十厘米的折射望远镜比反射望远镜昂贵。比如,平均15厘米的反射望远镜要几百美元,而15厘米的折射望远镜要几千美元。原因是这种大小下,磨制天文观测使用的反射镜比磨制透镜系统便宜。
13 对于需要便携性的爱好者来说,折射望远镜和牛顿反射式都是笨重的。一个典型的10英寸的牛顿反射式大约6到7英尺长100多磅重,而一个6英寸的折射望远镜就有这样大。很清楚,除非你有固定的场所安装这些设备,否则你要面临运输的困难。
14 另一种被称为施米特—卡塞格林的望远镜设计提供了一个有趣的优点。它是用反射镜和透镜的结合。口径几到几十厘米大小的施米特—卡塞格林式远比牛顿式昂贵但比纯折射的便宜,并且有着当牛顿式性能相近镜筒只有其三分之一长的优点。这样,施米特—卡塞格林式更便携且可以放在一个小的因而便宜的地方。因为它短,在有风的时候晃动的就很少。这是很重要的,因为望远镜的放大作用,即使很小的微风引起的震动在望远镜的像上也会产生很大的晃动。
15 我们看到最暗物体的下限取决于有多少光进入我们的眼睛而被聚焦。我们能看到东西因为光通过瞳孔被眼内的透镜系统聚焦在视网膜上成像,信号再被送到大脑。越多的光进入眼睛,越多的光落到视网膜上,越强的信号被送到大脑,就感到物体越亮。当我们刚进入一个黑屋子或刚从明亮的环境走到户外,我们感觉到什么都看不见。但当眼睛“适应”后,就可以看的更清楚了。适应是指瞳孔逐渐变大允许更多的光通过。尽管如此,还是有一个极限,能看多暗取决于瞳孔最大能变多大。
16 望远镜能让我们看到更暗物体是因为它们让更多的光进入我们的眼睛。即使在最暗的条件下,平均来说,认得瞳孔不能扩张大于8毫米。所以我们只能看到最暗和通过8毫米见方的光通量呈正比亮度。但是望远镜可以使我们欺骗大自然而把更多的光聚焦成适合瞳孔大小的光柱。用你的裸眼去看星空,你只能用瞳孔的8毫米见方集光。用望远镜看星空相当于用250毫米见方的透镜或面镜集光,这样相当于有了直径250毫米的瞳孔。这就怪不得望远镜能让我们看到宇宙中远比用裸眼看的暗的多的东西。理解这一基本原理你就明白能给我们揭示迄今为止都为尽知的宇宙的望远镜的神奇魔力了。我们将要看到,专业天文学家并不用眼睛而是用远比眼睛客观的仪器接受信号。但是位置是一样的。
17 天文学家倾向用主镜的口径称呼一架望远镜。天文学家倾向用“36英寸”或“2.4米”称呼一架望远镜。这样做的时候,他们使用英尺或米作单位指出望远镜主镜的直径。主镜通常被称为物镜。
18望远镜能够给我们看更远更暗天体的能力取决于主镜的面积。虽然天文学家用目镜的直径称呼望远镜,但望远镜聚光的能力正比于目镜的面积而不是起直径。根据圆面积公式,10英尺的望远镜实际上比5英尺的望远镜多聚4倍的光。望远镜聚集光的能力有时被称为聚光能力。但是这和望远镜的放大率没有任何关系。
19 为了放大望远镜中的像,你需要一个目镜。天文爱好者买的望远镜大多带有一组分类的目镜。每一个目镜典型的是一个小的包含透镜系统的圆柱。不同的目镜得到不同的放大率。
20 为了计算出一个特定目镜下一架特定望远镜的放大率,你必须理解焦距。每一个望远镜物镜和目镜有一个所谓的焦距。它其实是一个距离,通常用毫米衡量。(1英寸等于25.4毫米)如果你曾经用放大镜烧过树叶,放大镜镜片和燃烧物之间的距离就是焦距。换句话说,它就是透镜和来自遥远的光(此处是太阳)会聚的点。目镜的焦距通常写在目镜筒的侧面或末端,物镜的焦距经常包含在望远镜的文献里。
21 计算放大率,你要做的只是一个除法。当你在望远镜上插入一个特定的目镜需要计算它的放大率时,你要做的只是用物镜的焦距除以目镜的焦距。例如,一架望远镜物镜焦距是2540毫米,你插入了一个焦距25.4毫米的目镜,它的放大率是100。这样,意味着当你通过这架观测时,你会看到比你用裸眼近100倍或大100倍的物体。
22 理论上,用任一架望远镜可以得到任一放大率。为了得到更大的放大率你要做的只是选用越来越短焦距的目镜。这样,如果25.4毫米焦距的目镜得到100倍放大率,那么一半焦距的目镜,即12.7毫米,再同一望远镜上可以得到200倍的放大率。6.35毫米焦距的目镜可以得到400倍的放大率。理论上你可以一直这样做下去直到百万倍的放大率或者更多。但是这里面有一个问题,那就是……
23 望远镜的有用放大率。必须要记住的是目镜放大的是通过物镜的经聚焦形成的像。所有的目镜要利用这个像来放大因此就有一个限制,即在多少光的总量下能有效的工作。简而言之,目镜接受越多的光,它就可以把像放的越大并仍能在你眼睛的视网膜上产生足够明亮和清晰的像。换而言之,对于特定的望远镜,你把像放到多大仍然可以看到足够清晰明亮的像有一个实际的限制。超出这个限制就会得到不好的结果。随着越来越大的放大率,你确实得到越来越大的像,但它会变的更暗,更模糊。实际上你很难看到细节。所以远比“这架望远镜放大率是多少?”重要的问题是“这架望远镜的最大有用放大率是多少?”
24 一架特定望远镜的有用放大率的值取决于主镜的尺寸大小。虽然一架望远镜有用放大率会取决于很多因素,包括望远镜的光学质量,某个晚上地球大气的稳定程度。为了得到大约的最大有用放大率,你应该找到一架望远镜,以英寸为单位测出其直径再乘以40。因此,30英尺的望远镜在大多数晚上可用的最大放大率大约3*40=120(也写成120X),6英寸的在同一晚上在放大率是6*40=240时可以看到相同清晰明亮的像。因此,尽可能买佩有最大物镜的望远镜是值得的。
25 有时选用较低放大率比选用最大放大率明智。低放大率目镜会得到较小的像,但是像更尖锐更明亮。大多数情况,这会更适于眼睛。并且,对于某些比较大的天体,比如星团,彗星,月亮,宽视场低放大率的目镜能得到更好的图像。
26 双筒望远镜对于简单享受天空的乐趣来说可以算是非常令人满意的工具了。为了坚持“物超所值”的信条,双筒望远镜是我们能满足从望远镜里看天空的可以负担的起的一个选择。尽管双筒不能提供给你一般望远镜可以提供的月球和行星的细节,但是你只是躺下来随便扫过星空,它们已经是非常美妙的了。另外装备了双筒以后,你可以享受很多美妙的时刻,比如顺着银河巡航来找你可以在本书看到的星云和星团,也可以观察双星,月蚀和不期而遇的彗星。
27 双筒上的数字告诉你它的大小和放大率。双筒经常是用两个数字和一个×来描述的,如7×35或10×50。两个数字中的第一个数字表示双筒的放大率,第二个数字用毫米表示双筒主镜的口径。因为25毫米约等于一英寸,一只10×50 的双筒有一个50毫米或两英寸的物镜和10倍的放大率。
28 晚上用一只7×50的双筒是一个很好的选择。很多人感觉7×50的双筒可以比7×35的双筒(经常用在白天观看体育赛事上)提供更强的聚光能力,但是并不比更大放大率的双筒笨重麻烦。可以给我们提供银河壮观景象的更高放大率更大口径的双筒最好是用三角架支撑它们的重量使其稳固。
29 更高质量的折射望远镜和双筒使用镀膜的镜片。这些化学涂层使镜片看起来发蓝,它们减少内部的反射从而使仪器产生完美像质。
30 天文业余爱好者通常可以告诉你他们正在使用的望远镜的放大率,而专业天文学家不是这样思考问题。放大率是专业天文学家一般不在意的问题。那是因为专业天文学家通常从望远镜上拿下目镜,用望远镜上其他光学器件把光聚焦到CCD 上,就像被用作一架照相机或光度计的一部分或一台光谱仪。这样的话,专业天文学家感兴趣的是像的大小,能够看到的细节程度,和能够到达CCD的光波长或颜色。
31 专业天文学家更感兴趣的是望远镜的分辨率而不是放大率。分辨率指的是一架望远镜理论上让你看到细节的优良程度。细节的优良程度可以这样说,你能看到多小的物体,或者说两个物体靠的多近时仍然可以被分辨。望远镜的分辨率是以角秒来衡量的。
32 一架望远镜的理论分辨率很容易计算。一架以角秒衡量的光学望远镜的理论分辨率可以很容易的以13除以这架望远镜的以厘米衡量的主镜的口径来计算。(2.54厘米等于一英寸)这样一架100英寸(254厘米)的望远镜理论分辨率约为0.05角秒。一架200英寸望远镜理论分辨率约为0.025角秒(只有满月直径的1/36000)。换句话说,第二架望远镜可以分辨只有0.025角秒的天空中的两颗星。而100英寸的望远镜只能把它们看成一颗星。尖锐的像是高质量的像,因此天文学家希望得到最好的分辨率。这是另一个天文学家垂涎尽可能大的望远镜口径的原因。
33 你好,某某?请给我一张星图。就像有德克萨斯和阿富汗的地图,也有天空的地图。它们曾经是用手画的,但是现在天文学家主要依靠的是照片或计算机图像。其中一个范围最广的这类照片和图像由加利福尼亚进行的帕洛马天文台巡天和智利欧洲南方天文台进行的南半球巡天联合组成。几百幅图像显示了整个天空暗至20等的恒星。另一个范围广的星图是为哈勃空间望远镜编得导星目录表。它包括了暗至15等的超过一千五百万颗的恒星,只能从大容量的CD-ROM里得到。在观测以前,天文学家可能会扫一眼它需要的目标周围的较显眼的恒星,这样就可以作为他它需要的目标的路标。
34 天文学家用一套类似于地理经纬度的方法定位天空中的物体。就像地球上的物体可以用经度和纬度指明一样,天空中的任何一个物体可以用一套类似的坐标系统指明,在这个系统中赤纬代替了纬度,赤经代替了经度。
35 赤纬以度数衡量。在天球坐标中和地球赤道平行的大圆叫做天赤道。就像纬度一样,如果一个物体位于天赤道以北,就说他有正的赤纬。类似的,在天空中天赤道以南找到的物体有负的赤纬。到北或南的距离用度数角分角秒衡量(和纬度一样)。
36 赤经用时间的单位衡量。赤经坐标在天空中向东衡量。像经度也应该有一个零点。就像零度子午线穿过英国格林威治,天空中的零度子午线是穿过春分点的子午线,一个天体的赤经是地球从这条零度子午线在正南方时起自转到所求天体在正南方时止的时间长度。这样,天体的赤经就以小时、分钟和时间上的秒来衡量。
37 星图一般包括所含宇宙天体的坐标。就像地图一般在边上标出经纬度一样,星图一般在其所描绘的区域标出赤经赤纬。天体的表和目录一般也列出每一个天体的坐标。赤经(right ascension)一般缩写为R.A.;赤纬(declination)一般缩写为Dec.。这样,例如冬季星空中最灿烂的天狼星可以在天空中R.A.6h14m,Dec.-16°35'找到。而夏季星空中最亮的织女星位于R.A.18h34m,Dec.+38°41'。这些坐标就像经纬度能够定为洛杉矶或海上的一条船一样方便精确的定位出天上星星的位置。
38 相对于恒星运动的天体天球坐标不断改变。因为太阳月亮和行星相对于恒星不断运动,它们的赤经赤纬也在不断改变。这样,列出他们的位置的表每晚都需要改变。对于哪些是运动特别大的天体,比如月亮,有时需要列出起每小时的坐标。
39 天文学家为什么需要这样一个坐标系统?他们不能只是把望远镜指向他们想看的地方,就像你使用你的双筒?有很多这个系统必须的原因。首先,很多专业望远镜有上吨重,很难以转动。第二,望远镜通常放在只允许看到一条天空的天文台里,天文学家通常看不到全天情况。第三,天文学家选用的目标星通常太暗了,肉眼没法看到。第四,如果在德国的一个天文学家想告诉在智利的同伙把望远镜只向他们感兴趣的一颗星,他不能只是说,把望远镜指向那儿。这没有任何意义。
40 许多望远镜都是计算机辅助跟踪,指向天文学家想要研究的天体的正确的赤经赤纬。许多专业望远镜甚至一些爱好者的镜子都是计算机控制,自动移动指向正确的天球坐标的。近些年来,一些爱好者装备的计算机甚至事先装载了包括行星以及亮的恒星和其它一些好看的星团星云星系的坐标的软件。只要输入你想要看得天体名称,按一个按钮,望远镜会为你找到它。
41 天文学家不喜欢闪烁的星星。漫天闪烁的星星是一个很浪漫的景象。但讽刺的是,它是天文学家害怕的事情。那是因为当恒星闪烁时表明地球大气状况很糟。只有当地球大气干净稳定时望远镜才能产生天体非常清晰的像。但是有时地球大气极不稳定,表明大气中有无数不断移动的湍流。这时透过大气观察天体就像透过一条干净的急速流动的小溪看底下的东西。小溪底下的物体像是不断的波动,被水的湍流扭曲。同样的,大气湍流也把穿过它的光线折射扭曲了。对于裸眼,这些不稳定的大气是星星不多闪烁。望远镜使问题更复杂了,因为在放大天体像的过程中,它也放大了大气的扰动,是星星的像弥散成一个不断变换大小和形状的光斑。天文学家把大气不稳定的夜晚称为大气的视宁度不好。这样,一架望远镜在某一夜晚的分辨率比起其本身的尺寸跟依赖于大气状况。
42 天文学家通常试图把天文台建造在有更长时间大气视宁度的地方。选择天文台新台址的最大考虑是一个地方大气稳定性或说好的视宁度的持续性。这样的地方通常选在盛行风从比较平坦的地形或海洋上吹来的较高的山峰上。如此平坦的地形产生的空气流动可以保持光滑平行,从而只有尽可能小的垂直运动。这样,比如Kitt峰国家天文台位于较平坦的亚利桑那沙漠上几公里高的山峰上。世界上最好的一些天文台位于像夏威夷的一座名叫莫那克亚的死火山和智利安第斯山脉一系列的山峰上,这些都在于这些地方的向风面是一望无际的海洋。然而尽管在如此理想的地方,一些大望远镜的分辨率很少超过1角秒。
43 为了找到建造天文台的地方,天文学家也在寻找最晴朗的地方。可以理解,天文学家不仅希望找到大气稳定的地方,它们也希望找到最晴朗的地方。这当然意味着每年有尽可能多的无云日。夏威夷的一些地方覆盖着热带雨林,但是在13000英尺以上,莫那克亚的最高峰如此之高,除了偶尔的大雪,它已超出了“气象带”。智利的那些天文台在干燥的沙漠之上,一年也可能见不到一滴雨。
44 另一个选择台址的重要因素是远离污染。这看起来也很明显,但当说到污染,光学天文学家关心的不仅仅是空气中没有那些化合物。他们关心的是另一种形式的其他他人没有想过的污染,光污染。城市里发出的灯光和车灯光射向天空洗去了暗星河银河的光,使得一些天文研究除了在郊区实际上无法进行。向曾经是20世纪天文研究重地的威尔逊山和帕洛马山,已经因为来自洛杉矶和圣地亚哥等大城市的光污染逐渐变得不能用了。甚至Kitt峰也日益受到图森不断膨胀的人口的威胁。天文学家已经搬向更远的像在夏威夷和智利的山峰。
45 大众可以帮助减少光污染。不需要减少晚上街道和高速公路需要的安全照明量,政府和大众可以采取一些简单的不需增加负担的措施而显着的减少它们产生的光污染。仅仅在路灯上加上灯罩和使用不同的光给高速公路照明可以使我们重新拥有不仅是对天文观测至关重要的也是不断减少的自然资源的美丽星空。想要学习大众应该怎样做,请联系:
Dr.David Crawford
Dark Sky Association
3545 Stewart Street
Tucson,Arizona 857161
46 当我们谈到宇宙研究时,我们需要注意更多我们的眼睛可以注意的东西。有时天空看起来非常的晴朗但对于某些天文研究却不能接受。对观测光学这一精确测定天体视亮度的天文分支尤其正确。例如,实际上对裸眼来说不可见的一块非常薄的云,在这样的仪器里产生非常大的波动致使数据报废。
47 能造多大的望远镜有着技术上的限制。望远镜的主镜越大,它成的像越亮越尖锐。那么为什么不简单的用一块巨大的镜子呢?问题就在于造这个镜子的物质有一个承受力的极限。为了使望远镜的透镜或凹面镜能精确的把光聚成一个清晰的像,透镜或凹面镜的镜面必须有精确到几百万分之一英寸的只有光波长的几分之一的镜面形状。现代磨制镜面的工艺可以达到这样的精度,但是镜面重到一定程度以后会在自身的重力下变形。变形量不能达到眼睛看到的程度但是足够把光扭曲到不能精确成像。
48 世界上最大的折射望远镜在威斯康星,最大的反射望远镜在俄罗斯。(截止到2006年,最大的反射望远镜是欧洲北方天文台的GTC望远镜,口径11.5米——空间天文网注)世界上最大折射望远镜主镜口径有1米。它位于威斯康星州芝加哥大学管理的叶克斯天文台。1948年,加利福尼亚帕洛马山上直径5米的反射望远镜落成。几十年内它始终是世界上最大的。直到20世纪70年代,高加索山脉的一座6米的反射望远镜才落成,但是不幸的是它的光学系统始终不是太好。
49 新材料和新技术导致了更大望远镜的出现。20世纪80年代一项令人激动人心的望远镜设计技术的进步是天文学家否认了原来认为的光学望远镜尺寸有限制的想法。这一理念包括把几个单独的镜片合成一个望远镜并使它们单独接收到的光产生一个联合的像。这样的方法使单独镜片的总面积等效于整个它们联合起来的面积。夏威夷莫那克亚山上的凯克望远镜用36块直径1.8米的镜片拼在一起。1990年首次进行测试,1996年放在它旁边的双子镜(凯克2)开始加入。更大的多镜面望远镜设计正在进行中。
50 其它的望远镜设计用激光和计算机征服自然。在一个被称为自适应光学的研究领域,科学家正在调查利用激光不断探测望远镜上空的大气并且把信号传给计算机控制的支持主镜的马达使其精确的改变主镜的形状来抵消大气湍动的变化。如果成功的话,这种望远镜可以达到前所未有的清晰度。

❹ 人类连太阳系都没出去过,是怎么拍到银河系照片的

到现在为止,月球是人类到过最远的远方。在宇宙范围内,这段距离看起来实在不值一提。而四十多年前被发射升空的旅行者1号是距离地球最远的探测器了,但历时很久的渗基它仍然没有飞出太阳系。既然太阳系都没能出去过,那人类是怎么拍到银河系照片呢?下面我们就一起来解开这个谜团。从赫歇尔第一次建立银河系模型直到现在银河系大概样貌被大众接受,人类整个探索过程花费了近165年。 即使如此,目前我们对银河系的认知还不够深刻,当前我们所能看到的银河丛扰谨系样貌是在大量的观测数据之上,结合李含数学模型通过电脑合成成像。在科技水平稳步提高中,诞生了可测量天体射电波的射电望远镜。功能强大的射电望远镜,能够测算出天体的射电强度。后来,科学家又利用红外相机拍摄出银河系中心的红外成像图,并发现密集的恒星为一个上下凸起的盘状结构。

❺ 研究天文学的话平时都是怎么研究呢是用物理公式计算什么还是从哪里采集什么物质来研究呢

天文学的研弯瞎究需要利用数值模拟技术,在地球上时天文学家主要是通过总结、推导、分析来获得大运一些天文方面的物理规律,如果是地球上没有的环境就需要依靠自己的知识进行推算、外延,如果能够人为制造出合适的埋仿空环境,天文学家也会通过这种人为制造的环境进行天文方面的证实与研究,比如说对撞机的建造,就是为了制造模拟环境研究一些天文现象。

❻ 请问哪里有讲天文知识的网站啊

中国科学院国家天文台
http://www.bao.ac.cn/
星空观测者
http://vip.6to23.com/czast/
天文数据库
http://www.astronomy.csdb.cn:8090/index.jsp
中国科学院紫金山天凯返逗文台
http://www.pmo.jsinfo.net/
天文探索
http://www.oh100.com/tech/tianwen/
天狼星天文网
http://www.dogstar.net/
星星天堂
http://solar.starparadise.net/
……
在盯卖:http://www.dqw.cn/xuexi/zirankexue/tianwenxue/tianwenxue.htm 里可世亩以找到很多(不一定都有效)

❼ 太阳辐射数据可以从哪里获得

你好,很高兴为你解答,一般太阳辐射数据是通过太阳辐射观测台站直接观测获得,但限于资金和维护等问题,我国太阳辐射地面观测台站仅有98个,其数量与我国城镇化的发展需求极不匹配,对于没有设置太阳辐射观测站点地区的太阳辐射数据是无法通过测量获得的,太阳辐射数据的匮乏极大制约了建筑节能设计的深入。

❽ 嫦娥三号获得了哪些科学数据

“嫦娥三号”于2013年12月14日21时11分,成功软着陆于雨海北部19.51°W,44.12°N的位置处,成为继1976年前苏联的月球24号后首个在月球表面软着陆的探测器。

随即,嫦娥三号开展了着陆器就位探测和月球车月面巡视勘察的联合探测,开始进行“探月、巡天、观地氏搭”等科学探测:月表形貌与地质构造调查、月表物质成分和可利用资源调查、地球等离子层探测和月基光学天文观测。根据预定的探测计划,嫦娥三号取得了一系列重要的成果。

在整个科学探测期间,除了相机设备获取的影像和地形数据之外,其他搭载的有效载荷也获取了大量的科学数据成果:

月基光学望远镜:国际上首次依托地外天体平台开展自主天文观测。

月基天文望远镜摆脱了大气窗口的限制,在月球表面实歼配拿现了对多种类型天体(恒星)的近紫外波段(探测波段245~340nm)的科学探测,是国际上首次实现依托地外天体平台开展的自主天文观测。

月基光学望远镜也是嫦娥三号所有科学仪器中工作时间最长的设备,月昼期卖基间每天开机工作约12至18小时左右,截止到2018年6月,月基天文望远镜累计观测时间约为6962小时,共获取了34万多幅图像数据,为恒星演化、致密星和黑洞物理、高能天体等基础科学课题提供了研究支持。

极紫外相机:首次获得月基大视角观测的地球等离子体层图像数据。

着陆器上的极紫外相机可以对地球等离子体层产生的30.4nm辐射进行大视角、长期的观测研究,获取地球等离子体层的图像数据,是国际上首次在月球表面工作的极紫外波段成像仪器。

截止2014年6月12日,极紫外相机在每个月昼期间开展对地球等离子层的观测。共获取了1045幅图像数据,累计观测时间约230小时,为研究等离子体层的结构与动力学,以及电场分布提供翔实可信的数据。

测月雷达:获取月壤厚度分布和月球次表层地质结构相关科学数据。

嫦娥三号巡视器搭载的测月雷达是一种双通道天线雷达,其第一通道工作中心频率为60MHz,厚度分辨率为米级,探测深度大于100m;第二通道工作中心频率为500MHz,厚度分辨率小于30cm,探测深度大于30m。

截至2014年4月27日,测月雷达共开机工作8.3小时,探测的有效距离约为109米,共获取雷达第一通道回波数据18513道,第二通道回波数据32381道,为月壤厚度分布和月球次表层地质结构的研究提供了基础性的数据。

红外成像光谱仪:获取光谱数据。

嫦娥三号巡视器上搭载的红外成像光谱仪对巡视区月表物质类型和矿物组成进行了探测,累计工作时长约8.8小时,截止第二月昼仪器正常工作任务结束,共对4个月壤对象进行了光谱探测,总共获取了840帧可见近红外(光谱范围450nm~950nm)光谱图像数据和2240帧短波红外(光谱范围900nm~2400nm)光谱数据,为着陆点附近矿物组成研究提供了数据。

粒子激发x射线谱仪:获取能谱数据。

嫦娥三号搭载的粒子激发X射线谱仪(能量范围0.5~20keV)在月面工作期间累计时长约4小时,对两个位置点月壤样品的化学成分进行分析,总共获取了2091帧能谱数据。为着陆点附近的元素成分反演等研究提供了数据。

❾ 哪里有关于天文知识的网站

分类: 娱乐/明星 >> 网络资源
解析:

中国科学院国家天文芦行明台
bao.ac/

星空观测者
vip.6to23/czast/

天文数据库
astronomy.csdb:8090/index.jsp

中带伏国科学院紫金山天文台
pmo.jsinfo/

天文探索
oh100/tech/tianwen/

天狼星天文网
dogstar/

星星天堂
solar.starparadise/

……

在:dqw/xuexi/zirankexue/tianwenxue/tianwenxue 里可以找到很多(陪告不一定都有效

阅读全文

与天文成像数据从哪里获得相关的资料

热点内容
明日之后枪口为什么不可交易 浏览:459
品种推向市场前期要做哪些事情 浏览:583
做微商卖什么产品畅销 浏览:864
在广州市哪个市场可以买到鹅蛋 浏览:660
咕咚为什么数据异常 浏览:90
华为怎么切换卡2数据流量 浏览:432
什么产品节约用电 浏览:674
本人提供技术和场地怎么入股 浏览:199
如何理解各种平台数据 浏览:487
如何不接收抖音的好友信息 浏览:639
专业的运营代理怎么选 浏览:813
瓜子二手车交易市场有哪些 浏览:993
泸水墙坝菜市场在哪里 浏览:355
销售什么产品来钱快 浏览:339
完全竞争市场有哪些线条是重叠的 浏览:857
爱普生机械手如何在程序里调速度 浏览:816
产品处于密码锁定状态是怎么了 浏览:171
橙心优选怎么代理地推 浏览:990
如何访问服务器数据库 浏览:990
山西辅助技术服务是什么 浏览:528