1. 品牌营销利器!如何通过大数据推出爆款新品
传统的新品在洞察市场机会时,往往是根据市场部,咨询公司或者其他行业报告进行分析的,然后再粗略的预估新品的市场潜力。对于品牌来讲,这种方法限制的新品的研发效率,并且不确定是否符合市场期望。
孙子兵法有云: 知己知彼,百战不殆 。如果把这句话搬到新品研发过程中,依然适用,可以这样理解,
知己 ,了解品牌自身情况,市场占有率,内部运作流程,品牌影响力,品牌运营以及品牌的短板。
知彼 ,了解品牌的消费者在哪,消费者是谁,消费者的兴趣倾向;了解品牌的竞争对手,他在哪,什么样的,有哪些优势和弱势。
接下来,我们就聊聊,再者大数据时代,怎么洞察市场,挖掘具有竞争力的新品。
人人都在讨论大数据,那么大数据的核心价值是什么?能做哪些事情?我们拆解一下这个词,分为 “大” 和 “数据” 。
何谓“大”?简单来讲,可以理解为它的覆盖面广,全面,无所不能,庞大的。
何谓“数据”?即为根数据(Metadata),散落在各处的信息,咨询,资料等。
两个字组合起来可以转译为,人类可以通过庞大的根数据,应用到生活的各个方面。
大数据的核心价值就在于它的 商业价值 。通过从庞大的数据中,挖掘最有价值的信息,并应用到实际场景中。
大数据时代,人与互联网紧密相连。标记和记录一个人的信息,不再仅仅是通过身份证,而是有无数个根数据组成。根数据不是对象本身,它只描述对象的属性。例如,描述人的通俗的话语:
其中根数据为,身高,屁股,牙,口腔,胳肢窝,对应的值为一米二,身高一半,黄,臭和上锈。
当然,我们也可以通过根数据,了解整个人的信息,也就是所谓的用户画像。
以往,传统线下商店里,消费者买了什么,是谁买的,为什么买,他有什么特征,这些资料对于商店来说,是完全不清楚的。不过,这些事情对于大数据,简直是轻而易举。消费者在网上的记录十分详细,他的收入情况,地址甚至是生活习惯都可以探查清楚。
这也是大数据的魅力所在,当然,我们也可以将大数据能力矩阵,赋能在品牌新品的创新上,通过洞察市场机会,甄选产品概念并预估市场潜力。
盲目的投放和发布新产品,会受到市场的打击,提前预知消费者的兴趣倾向,购买喜好将会对新产品起到积极的正向作用。
用户在互联网上的多年的行为数据,都会详细记录在服务器,数据可能会散落在各个网站。但,这些数据能够详细描述用户的特征,都需要哪些数据?
用户基础数据
这部分数据描述了用户的基本特征,能够确定 用户是谁 。具体可以包括,
姓名,性别,年龄,职业,收入,地域,注册地,常用ip,手机型号等。如果该用户是实名注册,那这些数据可以很容易获取。但若是非实名,就需要后期通过模型推断其各个属性,如用户的性别判断,笔者在之前的文章中也有所描述,可以参考下《 AI驱动的电商用户模型:性别属性是如何确定 》。
购物数据
购物数据,是用户在电商网站上发生了购买行为,所记录下来的数据,从购买数据中可以提取出很多有价值的信息。
当用户对某件商品发生了购买行为,就意味着对商品有需求,商品对他有价值。
紧接着,如果用户周期性购买,那么用户就是该商品的绝对忠诚用户。
再者,用户浏览,搜索,加购,关注行为,也能反映用户对商品的倾向
不同的购买行为,能够对用户定义不同的标签,从而衍生了如下的数据维度:
购买力: 通过历史消费记录,收集订单价格信息,再根据其消费额度,判断用户的购买力,详情也可以查看笔者之前文章《 电商购买力模型:用大数据解锁智慧营销的新姿势 》
促销敏感度: 用户订单中,有优惠的订单比例。这个数据能够对品牌商的促销和促销力度提供指导作用。
还有,用户忠诚度,复购周期,品牌RFM模型,品牌偏好,性格偏好等等等等。
行业数据
当然,不单单要知道用户的信息,还需要了解自己和对手市场情况,有针对性做分析。
首先,聚焦自身品牌粉丝,探查粉丝不同性别,区域和年龄层对产品属性的青睐。举个简单例子,YSL粉丝群体中,一线城市品牌的金牌会员,年轻人更喜欢粉红色的口红,又喜欢短款,那么品牌可以针对这些人群有的放矢的研发新产品。
其次,了解竞品情况,跟进竞品市场。每个品牌的产品线不一定相同,sku池深度迥异。对于竞品品牌的爆品,我们可以针对性拉取爆品的粉丝,了解他的用户群体,并应用到新品研发策略中。
社交数据
社交数据能够更全面的认识品牌的人群,深度的理解用户的社交属性,在媒体上的发声态度,可以更加立体的理解用户群。
根据上述数据标签,能够充分的了解用户的需求点在哪里,新产品做到有的放矢。再通过大数据能力输出与产品匹配程度较高的用户群体,这可以为新产品的冷启动带来一批种子用户。
新品营销和品牌营销的套路基本相同,任何的新品对于用户来说,都需要经过“接触-认知-认识-认可”的一个过程。不过,在新品上市时,我们需要通过大数据,来完成用户对新品的接触和认知过程。也可以认为,这是新品的冷启动过程。
做过社区的朋友都应该知道,冷启动的种子用户,对于新产品有多么的重要。寻找精准的流量对新品带来的效果将是不可估量的。
这部分精准流量的筛选,可以分为三个阶段,预热期-爆发期-收尾期
预热期:扩大人群范围
预热期的目标就是希望可以让更多的人了解新品,让用户能够真的感知到新品的优势和创意点。此时,需要挖掘新品可能存在的潜在用户流量,把数据范围扩大新品所在品类,甚至相关品类。凡是对新品所在品类或者相关品类有过购买,浏览,搜索,收藏或者加购行为的用户,都要进行触达。
爆发期:寻找精准流量
爆发期即为收割期,春季栽的稻子该去收割了。其实就是把预热期触达的用户,进一步精准筛选,选出头部流量。此时,可以结合公司内外的资源对这部分用户进行邀请制的测试,使用新产品,优惠补贴,评测或媒体公关。进而将头部流量转化为已购用户和品牌粉丝,再通过这部分人群的口口相传,达到很好的口碑传播效应。
收尾期:人群二次触达
当然,并不是每个精准用户都会买单,各种各样的原因导致部分用户掉队。可能是当时忘记了,可能当时手头上有其他工作,可能对促销不是很满意,等等。对于这部分人群,我们仍需要再次触达。通过数据筛选出这部分用户群,然后进行大力度促销,最后在观察其数据情况。
当然,以上只是新品冷启动过程中,对人群的玩法。后续还有很多,涉及营销策划、创意、传播、新媒体、商家/货品,线上&线下联动营销等。但,核心的点仍然是 洞察市场和了解用户偏好 ,这样才能推出爆款产品。
2. 选品和定价应该关注哪些数据
通过买家地域数据指标关注买家来自哪些国家,不同国家的买家需求是怎样的
通过数据纵横-选品专家关注买家使用了什么搜索词、搜索次数,成交价以及目标市场的零售价来选品和定价
数据纵横中行业情报可以帮助卖家选择产品线及这个产品线的行业趋势,具体需关注:上架产品数、竞争力、成交率判断等
通过商铺分析查询自己店铺的流量数据,关注热卖产品
3. 新产品市场试销过程中要掌握的数据有()。
【答案】碧肢空:A、C、D
市场试销是在新产品悔瞎通过了鉴定以后,在正式投放市场之前组织的试验性销售,即将新产品及其包装、品牌名称、商标和市场营销方案等置于一定的市场环境之中,以了解消费者对新产品的实际反应和新产品市场规模的大小。在市场试销饥冲过程中要掌握试用率、再购率和购买频率三个数据。
4. App推广:应该关注哪些数据指标
指标,意为衡量目标的参数,或者预期中打算达到的指数、规格、标准。应用到App推广业务当中指反映该产品的业务水平情况。对于不同类型、不同阶段的应用产品而言,哪些数据是真正值得关注,从而对产品业务水平有较大提升的呢?
这里以第三方统计平台openinstall提供的统计数据类型为例。
安装量:
指通过渠道链接安装的设备数。
注册量:
指安装的所有设备之中,其中存在用户注册行为的设备数。
x天留存数(率):
某一天新增的安装设备中,安装完x天后还有活跃记录的设备数(比例)。
应用新增的安装量和注册量是衡量一个推广渠道质量好坏的最基础指标,另外留存的改变则反映了应用对于用户的吸引力程度的改变,可以根据日、周、月等时间标准进行划分,反映出不同的推广渠道质量随着时间产生的变化。通过结合这些基础数据,可对渠道的推广效果进行评估,从而对推广投放策略进行调整。
活跃设备数:
表示在一个时间段内(某天或某天中的某一小时),至少存在一次打开app行为的设备数;打开app的行为表示用户启动运行app或是app在已经运行的情况下,用户将app从后台切换到前台。
活跃用户数:
一段时间内的活跃设备中,存在注册行为的设备数。
平均打开次数:
一段时间内的所有活跃设备,App被平均打开的次数(打开的次数除以活跃设备数);打开app的行为表示用户启动运行app或是app在已经运行的情况下,用户将app从后台切换到前台。
平均在线时长:
一段时间内的所有活跃设备,App停留在前台的平均时长(总时长除以活跃设备数)。
活跃类指标,一般定义为启动App就算作活跃,而对于注册数量较为看重的应用,必须要存在注册行为才能算作活跃。对于资讯类、社交类、手游类、直播类等这些希望大量用户每天在线的应用,活跃趋势是衡量该类产品是否成功的最重要指标。该数据同时也从侧面反映了用户规模与用户粘度,若某一时间段出现下降趋势,应定制适当的推送策略进行用户召回。
这里的自定义效果点统计意为根据应用类型的不同,对用户的关键性行为所产生的量/次数进行统计。例如游戏类应用,统计用户的充值金额;直播类应用,统计不同直播间的点击次数;新闻资讯类,统计不同文章的阅读数。此指标可用于评估某一新功能添加后,用户对于该功能产生的兴趣高低,且对于产品是否需要进一步完善提供数据参考。
应用版本反映出每一代应用对应的用户使用比例,同样以日、周、月的时间期限划分,可以反映出用户对于新版本是否具有足够的兴趣和接受能力,对于版本每一次更新迭代具有一i顶的参考价值。系统版本和品牌机型的占比,对应App需要着重哪些机型和系统的适配比重。IP分布可用于地推业务的参考方向。
数据指标多种多样,选择正确的指标可以完善产品,保留用户,节省投放成本,创造更好的产品口碑。总之,有效的数据,可以对产品快速有效的发展提供正确的指引。
5. 产品经理在做数据分析时,哪些数据指标更应该关注
产品经理需要关注什么数据指标,估计接触过产品一点的人都能够说出来几个数据指标,比如说UV、PV,活跃用户数、新增用户数、留存率等等,诚然这些都是产品经理需要关注的数据,但却并不是说所有的数据都应该去关注。首先应该界定边界,对于不同类型的产品需要关注的数据指标肯定是不一样的,其次对于不同时期的产品所需要关注的指标也是不同的,下文将从种子期、推广期、成熟期三个阶段来简述产品经理需要关注的数据指标。
一.种子期
种子期是不需要做大规模的运营推广的,此阶段的用户更多的是来自于用户自增长,所以在种子期需要关注的数据主要是用户相关的数据是和产品本身的数据。
1.开源
a)活跃用户数量:首先依然是关于“活跃用户”的定义,然后再去关注这个数据指标;
b)付费转化率:对于这样的一款产品,用户愿意为之买单么,转化率说话;
c)ARPU值:每用户平均收入,不同的类型的产品没有可比性,同行业平均水平进行对比。营收=用户数量×付费转化率×ARPU值,为了能够提升营收,可以从这三方面入手去考虑,如何增加用户基数,如何能够提升用户的付费转化率以及用户付费留存率,用户是付费一次就不再付费还是付费之后还会重复付费,以及如何去提高产品的ARPU值。
2.节流
a)沉默用户数量:定义什么样的用户为“沉默用户”,然后去关注这个指标;
b)流失用户数量:定义什么样的用户为“流失用户”,然后去关注这个指标。对于产品而言,一旦用户流失则很难能够再次召回,就算召回,成本也很高,所以应该提前建立预警机制,定义“沉默用户”与“流失用户”,在用户变为沉默用户的时候,就开始采用相应的手段,防止用户流失,同时也应该设立老用户回流机制,进行老用户的召回。数据本身是客观的,但是在解读的过程中则会掺杂主观因素,同时数据波动的背后也可能会有着其他因素的干扰,所以数据也可能会骗人。在用数据说话的同时,也应该辩证性的去看待数据,相信数据但又不唯数据是从。另外对于不同的产品需要关注的数据是不同的,而不同时期的产品需要关注的数据也是不同的,要根据产品本身的特点和产品的生命周期阶段去选择合适的数据指标进行关注,以保证产品的健康发展。
6. 产品数据分析要关注哪些维度或指标
(一)、销售数据之维度
1、商品
商品是零售分析的最细维度之一,大部分的指标都依附商品来做明细的记录,同时很多维度也是通过商品进行交叉分析。
2、客户
客户是销售对象,包括会员。客户所在地和区域有关联。
3、区域
区域是地理位置。从全球视角看:洲---国家---区;从国家视角看:区——省/市——县/ 区—镇/乡/村,一般按正式行政单位划分。
4、时间
时间是进行数据分析非常重要的维度,分析的角度有公历角度和农历角度。其中, 公历角度:年——季度——月——日——时段(每2小时为一个段);星期、公历节假日。农历角度:年——节气——日——时刻;农历节假日。
(二)、销售数据之指标
1、销售数量
客户消费的商品的数量。
2、含税销售额
客户购买商品所支付的金额。
3、毛利
毛利=实际销售额-成本。
4、净利
净利=去税销售额-去税成本。
5、毛利率
销售毛利率是毛利占销售收入的百分比,也简称为毛利率,其中毛利是销售收入与销售成本的差。
毛利率=(毛利/实际销售额)×100%。
6、周转率
周转率和统计的时间段有关。周转率=(销售吊牌额/库存金额)×100%。
7、促销次数
促销次数有宏观概念上的,也有微观概念上的。宏观上,是指一个销售单位中一段 时间内发动促销的次数,或某个供应商的商品在一段时间内参与促销的次数;微观层面上,是表示一个单品在一段时间内参与促销的次数。
8、交易次数
客户在POS 点上支付一笔交易记录作为一次交易。
9、客单价
客户在一次交易中支付的金额总和称为客单价。
客单价=销售额/交易次数。
10、周转天数
周转天数=库存金额/销售吊牌额。周转天数越长,表示经营效率越低或存货管理越差;周转天数越短,表示经营效率越高或存货管理。
11、退货率
退货率=退货金额/进货金额(一段时间);用于描述经营效率或存货管理情况的指标,与时间有关。
12、售罄率
售罄率=销售数量/进货数量。
13、库销比
库销比=期末库存金额/(本期销售牌价额/销售天数*30)
(只有在单款SKU 计算中可用数量替代金额。)
14、连带率
连带率=销售件数/交易次数。
15、平均单价
平均单价=销售金额/销售件数。
16、平均折扣
平均折扣=销售金额/销售吊牌额
17、SKU(深度与宽度)
英文全称为 stock keeping unit, 简称SKU,定义为保存库存控制的最小可用单位,例如纺织品中一个SKU 通常表示一个规格,颜色,款式),即货号,例:AMF80570-1。
18、期货
所谓期货,一般指期货合约,就是指由期货交易所统一制定的、规定在将来 某一特定的时间和地点交割一定数量标的物的标准化合约 。服装行业上具体指订货会上所订购且分期交付的货品。
19、坪效
就是指终端卖场1平米的效率,一般是作为评估卖场实力的一个重要标准。
坪效=销售金额/门店营业面积(不包含仓库面积)。
20、促销商品
指促销活动期间指定的商品,其价格低于市场同类的商品。包括DM 商品,开店促销,普通促销货(特价),不包含正常降价。
(三)、销售数据之分析方法
1、直接数据的分析。
2、间接数据的组合分析。
7. 电商运营要关注哪些数据如何获取这些数据
电商运营要关注的数据如下所示:
1、订单数据:每天成交额、客单价等
2、用户数据:新老用户的登录、购买情况等
3、商品数据 :商品销量、库存、价格数据
4、流量数据:PV/UV、流量分布,访问深度
5、咨询数据:咨询数据也是关注的,转化率多少
6、推广数据:推广渠道的点击、转化情况,筛选核心渠道,新客户获取成本要尽量越少越好
7、营销活动数据分析