⑴ 常见的大数据分析工具有哪些
大数据分析的前瞻性使得很多公司以及企业都开始使用大数据分析对公司的决策做出帮助,而大数据分析是去分析海量的数据,所以就不得不借助一些工具去分析大数据,。一般来说,数据分析工作中都是有很多层次的,这些层次分别是数据存储层、数据报表层、数据分析层、数据展现层。对于不同的层次是有不同的工具进行工作的。下面小编就对大数据分析工具给大家好好介绍一下。
首先我们从数据存储来讲数据分析的工具。我们在分析数据的时候首先需要存储数据,数据的存储是一个非常重要的事情,如果懂得数据库技术,并且能够操作好数据库技术,这就能够提高数据分析的效率。而数据存储的工具主要是以下的工具。
1、MySQL数据库,这个对于部门级或者互联网的数据库应用是必要的,这个时候关键掌握数据库的库结构和SQL语言的数据查询能力。
2、SQL Server的最新版本,对中小企业,一些大型企业也可以采用SQL Server数据库,其实这个时候本身除了数据存储,也包括了数据报表和数据分析了,甚至数据挖掘工具都在其中了。
3、DB2,Oracle数据库都是大型数据库了,主要是企业级,特别是大型企业或者对数据海量存储需求的就是必须的了,一般大型数据库公司都提供非常好的数据整合应用平台;
接着说数据报表层。一般来说,当企业存储了数据后,首先要解决报表的问题。解决报表的问题才能够正确的分析好数据库。关于数据报表所用到的数据分析工具就是以下的工具。
1、Crystal Report水晶报表,Bill报表,这都是全球最流行的报表工具,非常规范的报表设计思想,早期商业智能其实大部分人的理解就是报表系统,不借助IT技术人员就可以获取企业各种信息——报表。
2、Tableau软件,这个软件是近年来非常棒的一个软件,当然它已经不是单纯的数据报表软件了,而是更为可视化的数据分析软件,因为很多人经常用它来从数据库中进行报表和可视化分析。
第三说的是数据分析层。这个层其实有很多分析工具,当然我们最常用的就是Excel,我经常用的就是统计分析和数据挖掘工具;
1、Excel软件,首先版本越高越好用这是肯定的;当然对Excel来讲很多人只是掌握了5%Excel功能,Excel功能非常强大,甚至可以完成所有的统计分析工作!但是我也常说,有能力把Excel玩成统计工具不如专门学会统计软件;
2、SPSS软件:当前版本是18,名字也改成了PASW Statistics;我从3.0开始Dos环境下编程分析,到现在版本的变迁也可以看出SPSS社会科学统计软件包的变化,从重视医学、化学等开始越来越重视商业分析,现在已经成为了预测分析软件。
最后说表现层的软件。一般来说表现层的软件都是很实用的工具。表现层的软件就是下面提到的内容。
1、PowerPoint软件:大部分人都是用PPT写报告。
2、Visio、SmartDraw软件:这些都是非常好用的流程图、营销图表、地图等,而且从这里可以得到很多零件;
3、Swiff Chart软件:制作图表的软件,生成的是Flash
⑵ 常用的数据可视化软件有哪些
数据可视化工具:
PowerBI
Microsoft PowerBI同时提供本地和云服务。它最初是作为Excel插件引入的,不久PowerBI凭借其强大的功能开始普及。目前,它被视为商业分析领域的软件领导者。它提供了数据可视化和bi功能,使用户可以轻松地以更低的成本实现快速,明智的决策,用户可协作并共享自定义的仪表板和交互式报告。
Solver
Solver是一家专业的企业绩效管理(CPM)软件公司。Solver致力于通过获取可提升公司盈利能力的所有数据源来提供世界一流的财务报告、预算方案和财务分析。其软件BI360可用于云计算和本地部署,它专注于四个关键的分析领域,包括财务报告、预算、仪表板和数据仓库。
Qlik
Qlik是一种自助式数据分析和可视化工具。它具有可视化仪表板,可简化数据分析,并帮助公司快速制定业务决策。
Tableau Public
Tableau 是一个交互式数据可视化工具。不像大多数可视化工具那样需要编写脚本,Tableau的简便性可以帮助新手降低使用难度。只需托拉拽的简单操作使数据分析轻松完成。他们也有一个“新手入门工具包”和丰富的培训资料,可帮助用户创建创更多的分析报告。
谷歌Fusion Tables
Fusion Table 是谷歌提供的数据管理平台。你可以使用它来做数据收集、数据可视化和数据共享。他就像电子数据表,但功能更强大更专业。你可以通过添加CSV、KML和电子表格中的数据集和同事共享资料。你还可以发布数据资料并将其嵌入到其他网页属性中。
Infogram
Infogram是一种直观的可视化工具,可帮助你创建精美的信息图表和报告。它提供了超过35个交互式图表和500多个地图,帮助你可视化数据。除了各种各样的图表,还有柱状图、条形图、饼图或词云等,它用创新的信息图表给你留下深刻印象。
⑶ 数据可视化的工具有哪些
开门见山,不说废话!Hightopo是由厦门图扑软件科技有限公司独立自主研发,专注于2D和3D 图形界面组件数据可视化领域,用户遍及电信、电力、政府、交通、水利、公安、国防、医疗、金融、科研等行业。提供从 SDK 的 API 组件库到行业图标和三维模型资源库,构成了一站式的数据可视化解决方案。
建立1:1高保真模拟,通过数字工厂三维场景为基础,展现矿业各个生产厂区的建设、运行情况、安全配备以及注意事项,达到逼真震撼的视觉效果。
可以构建现代化的,跨桌面和移动终端的企业应用,无需担忧跨平台兼容性,及触屏手势交互等棘手问题。
⑷ 数据可视化工具有哪些
数据在我们这个时代变得越来越重要了,就像是黄金和石油一样宝贵,而数据可视化就是把杂乱无序的数据生成更直观的统计图形、图表等,来更加清晰有效地传递信息并以此做出决策。
既然已经有许多的答主推荐了很多好用的可视化工具,那我们就来讲讲怎样从杂乱无章的数据到最后生成易于理解和使用的数据报表的整个流程。
一、数据清洗
如何去整理分析数据,其中一个很重要的工作就是数据清洗。数据清洗是指对“脏”数据进行对应方式的处理,脏在这里意味着数据的质量不够好,会掩盖数据的价值,更会对其后的数据分析带来不同程度的影响。有调查称,一个相关项目的进展,80%的时间都可能会花费在这个工作上面。因为清洗必然意味着要对数据有一定的理解,而这个工作是自动化或者说计算机所解决不了的难题,只能靠人脑对数据进行重新审查和校验,找到问题所在,并通过一些方法去对对应的数据源进行重新整理。
清洗数据的方式大概可以分为以下几类,筛选、清除、补充、纠正,例如:
· 去除不需要的字段:简单,直接删除即可。但要记得备份。
· 填充缺失内容:以业务知识或经验推测填充缺失值;以同一指标的计算结果(均值、中位数、众数等)填充缺失值;以不同指标的计算结果填充缺失值。
· 格式不一致:时间、日期、数值、全半角等显示格式不一致,这种问题通常与输入端有关,在整合多来源数据时也有可能遇到,将其处理成一致的某种格式即可。例如一列当中储存的是时间戳,某些跨国公司的不同部门在时间的格式上有可能存在差别,比如2019-01-12,2019/01/12等,这时候需要将其转换成统一格式。
· 内容中有不需要的字符:某些情况使得有些数据中包含不需要的字符。例如从网络爬到的数据会包含一些编码解码的字符如%22,这种情况下,需要以半自动校验半人工方式来找出可能存在的问题,并去除不需要的字符。
· 数据提取:例如咱们只有用户身份证的信息,但是需要用户生日一列,这时候我们可以直接从身份证号中按照一定规律将生日信息提取出来。
在MicroStrategy的Library产品覆盖了桌面端和移动端,并且是为数不多能在移动端获得原生体验的产品。同时,用户也可以在产品中分享洞见、并与同事协同工作。
如今的商业决策,绝不仅仅只是基于以往经验的定性分析,通过数据可视化得出的洞见,并一步步量化得到最优解,从而使得风险最低、利润最大已经是行业趋势。随着大数据的在各行各业中的广泛应用,数据可视化的重要性也不言而喻,以上就是在商业环境中数据可视化的主要流程,感谢阅读。
⑸ 可视化数据分析软件有哪些
助你高效直观的处理和展示数据。只要你有数据,不管你是文员、财务、销售、还是团队领导,都可以通过“迪赛智慧数可视化互动平台”通过各种炫酷的图表,让数据展示得更直观清晰。网络搜索“迪赛智慧数”或登录https://www.511ds.com/免费注册使用吧。
⑹ 用图示展示分类数据有什么工具比较好
付费方面:国外产品在国内比较出名的是Tableau,已经出了很多版本,到10了吧,功能多,可视化效果也不错,但是价格也不便宜啊。国内的话今年比较热门的是BDP商业数据平台、数据观等产品,BDP集数据整合(支持直连数据库、接入第三方平台等)、数据处理、可视化分析、账号管理等功能,支持多种可视化大屏,拖拽就能可视化,不难;数据观操作不难,跟BDP一样拖拽即可分析数据,效果还不错。
免费方面:BDP个人版、excel、数据观等产品都可以免费用的,做图表都不难。
⑺ 数据可视化工具有哪些
数据可视化工具有思迈特软件Smartbi,Tableau,Qlik Sense,QlikView,DataFocus,FineBI。数据可视化是关于数据视觉表现形式的科学技术研究,是指将大型数据集中的数据以图形图像形式表示,并利用数据分析和开发工具发现其中未知信息的处理过程。与信息图形,信息可视化,科学可视化以及统计图形密切相关。⑻ 常用的可视化数据展示工具有哪些
推荐一款国内最新的BI产品DataFocus,采用了最新的中文自然语言处理系统,部署完成后使用起来和用浏览器搜索一样便捷简单,而且性价比很高,可以在他们的官网申请试用试试看。 简单介绍下:
首先是基于大数据前提的数据处理技术,可以对TB级的数据实现秒级响应,能交互式分析,上钻下钻挖掘数据;
然后是以无IT背景业务人员为目标用户,当然数据分析师也一样能用,而且可以更关注于问题本身,略去以前繁重的编程过程。 再者不需要IT人员进行事先建模,可在分析过程中灵活调整以及自动建模,提升分析的效率从而提升企业决策的洞察力和及时性。
最后,DataFocus采用自然语言分析处理,运用搜索问答式的交互方式,更贴合用户使用习惯,并在使用中运用AI智能去辅助用户对数据进行探索。轻量建模、数据直连、灵活交互,相比传统BI成本更低、上线更快、使用更方便、价值更大。
效果是这样的