① 什么是插值法
插值法又称“内插法”。利用函数f白)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f余)的近似值,这力一法称为插值法。如果这特定函数是多项式,就称它为插值多项式。
内插法又称插值法。根陆旁据未知函数f(x)在某区间内若干点的函数值,作出慧裤在该若干点的函数值与f(x)值相等的特定函数来近似原函数f(x),进而可用此特定函数算出该区间内其他各点的原函数f(x)的近似值,这种方法,称为内插法。
按特定函数的性质分,有线性内插、非线性内插等;按引数(自变量)个数早碧橡分,有单内插、双内插和三内插等。
② 什么是插值法
“插值法”祥坦的原理是根据比例关系建立一个方程,然后,解方程计算得出所要求的数据,
计算举例:假设与A1对应的数据是B1,与A2对应的数据是B2,现在已知与A对应的数据是B,A介于A1和A2之间,则可以按照(A1-A)/(A1-A2)=(B1-B)/(B1-B2)计算得出A的数值,其中A1、A2、B1、B2、B都是已知数据。
(2)如何理解数据插值扩展阅读:
Hermite插值是利用未知函数带简f(x)在插值节点上的函数值及导数值来构造插值多项式的,其提法为:给定n+1个互异的节点x0,x1,……,xn上的函数值和导数值求一个2n+1次多项式H2n+1(x)满足插值条件:
H2n+1(xk)=yk
H'2n+1(xk)=y'k k=0,1,2,……,n ⒀
如上求出的H2n+1(x)称为2n+1次Hermite插值函数,它与被插函数一般有更好的密合度。
★基本思想
利用Lagrange插值函谨行桐数的构造方法,先设定函数形式,再利用插值条件⒀求出插值函数。
参考资料:插值法_网络
③ 插值法是什么意思
插值法是计算实际利率的一种方法,表示使未来现金流量现值等于债券购入价格时的折现率。
在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。
插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。
插值:用来填充图像变换时像素之间的空隙。
插值问题的提法是:假定区间[a,b]上的实值函数f(x)在该区间上 n+1个互不相同点x0,x1,……,xn处的值是f (x0),……f(xn),要求估算f(x)在[a,b]中某点x*的值。
基本思路是,找到一个函数P(x),在x0,x1,……,xn的节点上与f(x)函数值相同(有时,甚至一阶导数值也相同),用P(x*)的值作为函数f(x*)的近似。
其通常的做法是:在事先选定的一个由简单函数构成的有n+1个参数C0,C1,……Cn的函数类Φ(C0,C1,…大顷宽…Cn)中求出满足条件P(xi)=f(xi)(i=0,1,…… n)的函数P(x),滚亮并以P()作为f()的估值。
此处f(x)称为被插值函数,x0,x1,……,xn称为插值结(节)点,Φ(C0,C1,……Cn)称为插值函数类,上面等式称为插值条件,Φ(C0,C1,……Cn)中满足上式的函数称为插值函数。
R(x)= f(x)-P(x)称为插值余项。当估乎贺算点属于包含x0,x1,……,xn的最小闭区间时,相应的插值称为内插,否则称为外插。
④ 插值法的原理是什么
插值法”的原理是根据比例关裂雹锋系建立一个方程,然后,解方程计算得出所要求的数据。
计算方法:假设与A1对应的数据是B1,与A2对应的数据是B2,现在已知与A对应的数据是B,A介于A1和A2之间,则可以按照(A1-A)/(A1-A2)=(B1-B)/(B1-B2)计算得出A的数值,其中A1、A2、B1、B2、B都是已知数据。
根据(A1-A)/(A1-A2)=(B1-B)/(B1-B2)可知:(A1-A)=肆脊(B1-B)/(B1-B2)×(A1-A2)
A=A1-(B1-B)/(B1-B2)×(A1-A2)=A1+(B1-B)/(B1-B2)×(A2-A1)
(4)如何理解数据插值扩展阅读
插值法又称“内插法”,是利用函数f (x)在某区间中已知的若干点的函数值,作出适当的特定函数,在区间的其他点上用这特定函数的肆晌值作为函数f (x)的近似值,这种方法称为插值法。如果这特定函数是多项式,就称它为插值多项式。
如果只需要求出某一个x所对应的函数值,可以用“图解内插”。它利用实验数据提供要画的简单曲线的形状,然后调整它,使得尽量靠近这些点。
如果还要求出因变数p(x)的表达式,这就要用“表格内插”。通常把近似函数p(x)取为多项式(p(x)称为插值多项式),最简单的是取p(x)为一次式,即线性插值法。在表格内插时,使用差分法或待定系数法(此时可以利用拉格朗日公式)。在数学、天文学中,插值法都有广泛的应用。